These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 34080064)
21. Secondary metabolites from the Chinese liverwort Cephaloziella kiaeri. Li RJ; Zhu RX; Li YY; Zhou JC; Zhang JZ; Wang S; Ye JP; Wang YH; Morris-Natschke SL; Lee KH; Lou HX J Nat Prod; 2013 Sep; 76(9):1700-8. PubMed ID: 24033150 [TBL] [Abstract][Full Text] [Related]
22. In situ high-frequency observations of mycorrhizas. Allen MF; Kitajima K New Phytol; 2013 Oct; 200(1):222-228. PubMed ID: 23772913 [TBL] [Abstract][Full Text] [Related]
23. Mollicutes-related endobacteria thrive inside liverwort-associated arbuscular mycorrhizal fungi. Desirò A; Naumann M; Epis S; Novero M; Bandi C; Genre A; Bonfante P Environ Microbiol; 2013 Mar; 15(3):822-36. PubMed ID: 22830931 [TBL] [Abstract][Full Text] [Related]
24. Marine pelagic ecosystems: the west Antarctic Peninsula. Ducklow HW; Baker K; Martinson DG; Quetin LB; Ross RM; Smith RC; Stammerjohn SE; Vernet M; Fraser W Philos Trans R Soc Lond B Biol Sci; 2007 Jan; 362(1477):67-94. PubMed ID: 17405208 [TBL] [Abstract][Full Text] [Related]
25. Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Day TA; Ruhland CT; Grobe CW; Xiong F Oecologia; 1999 Apr; 119(1):24-35. PubMed ID: 28308156 [TBL] [Abstract][Full Text] [Related]
26. A Previously Undescribed Helotialean Fungus That Is Superabundant in Soil Under Maritime Antarctic Higher Plants. Newsham KK; Cox F; Sands CJ; Garnett MH; Magan N; Horrocks CA; Dungait JAJ; Robinson CH Front Microbiol; 2020; 11():615608. PubMed ID: 33391247 [TBL] [Abstract][Full Text] [Related]
27. Extinction and recolonization of maritime Antarctica in the limpet Nacella concinna (Strebel, 1908) during the last glacial cycle: toward a model of Quaternary biogeography in shallow Antarctic invertebrates. González-Wevar CA; Saucède T; Morley SA; Chown SL; Poulin E Mol Ecol; 2013 Oct; 22(20):5221-36. PubMed ID: 24102937 [TBL] [Abstract][Full Text] [Related]
28. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica. Thomazini A; Francelino MR; Pereira AB; Schünemann AL; Mendonça ES; Almeida PHA; Schaefer CEGR Sci Total Environ; 2016 Aug; 562():802-811. PubMed ID: 27110991 [TBL] [Abstract][Full Text] [Related]
30. Selenium volatilization from tundra soils in maritime Antarctica. Ye W; Yuan L; Zhu R; Yin X; Bañuelos G Environ Int; 2021 Jan; 146():106189. PubMed ID: 33130370 [TBL] [Abstract][Full Text] [Related]
31. Dual colonization of Mucoromycotina and Glomeromycotina fungi in the basal liverwort, Haplomitrium mnioides (Haplomitriopsida). Yamamoto K; Shimamura M; Degawa Y; Yamada A J Plant Res; 2019 Nov; 132(6):777-788. PubMed ID: 31617040 [TBL] [Abstract][Full Text] [Related]
32. Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Luthfiana N; Inamura N; Tantriani ; Sato T; Saito K; Oikawa A; Chen W; Tawaraya K Mycorrhiza; 2021 May; 31(3):403-412. PubMed ID: 33459866 [TBL] [Abstract][Full Text] [Related]
33. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. Jiang F; Zhang L; Zhou J; George TS; Feng G New Phytol; 2021 Apr; 230(1):304-315. PubMed ID: 33205416 [TBL] [Abstract][Full Text] [Related]
34. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. Xiong FS; Mueller EC; Day TA Am J Bot; 2000 May; 87(5):700-10. PubMed ID: 10811794 [TBL] [Abstract][Full Text] [Related]
35. Long-term experimental warming alters nitrogen-cycling communities but site factors remain the primary drivers of community structure in high arctic tundra soils. Walker JK; Egger KN; Henry GH ISME J; 2008 Sep; 2(9):982-95. PubMed ID: 18528416 [TBL] [Abstract][Full Text] [Related]
36. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Fernandez CW; Nguyen NH; Stefanski A; Han Y; Hobbie SE; Montgomery RA; Reich PB; Kennedy PG Glob Chang Biol; 2017 Apr; 23(4):1598-1609. PubMed ID: 27658686 [TBL] [Abstract][Full Text] [Related]
37. Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mickan BS; Abbott LK; Stefanova K; Solaiman ZM Mycorrhiza; 2016 Aug; 26(6):565-74. PubMed ID: 27067713 [TBL] [Abstract][Full Text] [Related]
38. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Christiansen CT; Haugwitz MS; Priemé A; Nielsen CS; Elberling B; Michelsen A; Grogan P; Blok D Glob Chang Biol; 2017 Jan; 23(1):406-420. PubMed ID: 27197084 [TBL] [Abstract][Full Text] [Related]
39. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Khalvati MA; Hu Y; Mozafar A; Schmidhalter U Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474 [TBL] [Abstract][Full Text] [Related]
40. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens. Peltoniemi K; Laiho R; Juottonen H; Kiikkilä O; Mäkiranta P; Minkkinen K; Pennanen T; Penttilä T; Sarjala T; Tuittila ES; Tuomivirta T; Fritze H FEMS Microbiol Ecol; 2015 Jul; 91(7):. PubMed ID: 26066028 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]