These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34080095)

  • 1. Prediction of complications and fusion outcomes of fused lumbar spine with or without fixation system under whole-body vibration.
    Wang QD; Guo LX
    Med Biol Eng Comput; 2021 Jun; 59(6):1223-1233. PubMed ID: 34080095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Posterior Screw Fixation in Single-Level Transforaminal Lumbar Interbody Fusion During Whole Body Vibration: A Finite Element Study.
    Fan W; Guo LX
    World Neurosurg; 2018 Jun; 114():e1086-e1093. PubMed ID: 29605701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical role of osteoporosis in the vibration characteristics of human spine after lumbar interbody fusion.
    Wang QD; Guo LX
    Int J Numer Method Biomed Eng; 2020 Dec; 36(12):e3402. PubMed ID: 33021071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posterior Lumbar Interbody Fusion Versus Transforaminal Lumbar Interbody Fusion: Finite Element Analysis of the Vibration Characteristics of Fused Lumbar Spine.
    Fan W; Guo LX; Zhao D
    World Neurosurg; 2021 Jun; 150():e81-e88. PubMed ID: 33647495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical evaluation of anterior lumbar interbody fusion with various fixation options: Finite element analysis of static and vibration conditions.
    Shen H; Chen Y; Liao Z; Liu W
    Clin Biomech (Bristol); 2021 Apr; 84():105339. PubMed ID: 33780788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of effects of four interbody fusion approaches on the fused and adjacent segments under vibration.
    Guo LX; Wang QD
    Clin Biomech (Bristol); 2020 Jun; 76():105023. PubMed ID: 32417603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical role of cement augmentation in the vibration characteristics of the osteoporotic lumbar spine after lumbar interbody fusion.
    Wang QD; Guo LX
    J Mater Sci Mater Med; 2022 Jun; 33(6):52. PubMed ID: 35657438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of bilateral pedicle screw fixation on vibration response of the disc degenerated human lumbar spine: A finite element stress analysis.
    Fan W; Guo LX
    Technol Health Care; 2019; 27(4):441-450. PubMed ID: 31033465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical comparison of the effects of anterior, posterior and transforaminal lumbar interbody fusion on vibration characteristics of the human lumbar spine.
    Fan W; Guo LX
    Comput Methods Biomech Biomed Engin; 2019 Apr; 22(5):490-498. PubMed ID: 30714396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of different fixation systems on oblique lumbar interbody fusion under vibration conditions.
    Zhang B; Li TC; Wang X; Du CF; Zhu R
    Med Eng Phys; 2024 Jun; 128():104169. PubMed ID: 38789212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Pedicle Screw Fixation on Adjacent Segments in Osteoporotic Spine Following Transforaminal Lumbar Interbody Fusion Under Whole Body Vibration.
    Yuan X; Li Y; Chen Q; Zeng Q; Pou K; Wong H; Tang S
    World Neurosurg; 2022 May; 161():e523-e530. PubMed ID: 35183798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the influence of three different lumbar interbody fusion approaches on stress in the pedicle screw fixation system: Finite element static and vibration analyses.
    Fan W; Guo LX
    Int J Numer Method Biomed Eng; 2019 Mar; 35(3):e3162. PubMed ID: 30294902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of non-fusion dynamic stabilization on biomechanical responses of the implanted lumbar spine during whole-body vibration.
    Fan W; Guo LX
    Comput Methods Programs Biomed; 2020 Aug; 192():105441. PubMed ID: 32172078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress analysis of the implants in transforaminal lumbar interbody fusion under static and vibration loadings: a comparison between pedicle screw fixation system with rigid and flexible rods.
    Fan W; Guo LX; Zhao D
    J Mater Sci Mater Med; 2019 Oct; 30(10):118. PubMed ID: 31628540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Response of the Lumbar Spine to Whole-body Vibration Under a Compressive Follower Preload.
    Guo LX; Fan W
    Spine (Phila Pa 1976); 2018 Feb; 43(3):E143-E153. PubMed ID: 28538593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical analysis of lumbar interbody fusion supplemented with various posterior stabilization systems.
    Fan W; Guo LX; Zhang M
    Eur Spine J; 2021 Aug; 30(8):2342-2350. PubMed ID: 33948750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of dynamic response of three TLIF techniques on the fused and adjacent segments under vibration.
    Wang QD; Guo LX
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):308-319. PubMed ID: 33047970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the influence of vertical whole-body vibration on biomechanics of spinal segments after lumbar interbody fusion surgery.
    Fan W; Guo LX
    Clin Biomech (Bristol); 2021 Jun; 86():105389. PubMed ID: 34052692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study.
    Ambati DV; Wright EK; Lehman RA; Kang DG; Wagner SC; Dmitriev AE
    Spine J; 2015 Aug; 15(8):1812-22. PubMed ID: 24983669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical investigation of topping-off technique using an interspinous process device following lumbar interbody fusion under vibration loading.
    Fan W; Guo LX
    Med Biol Eng Comput; 2021 Nov; 59(11-12):2449-2458. PubMed ID: 34671891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.