BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34080158)

  • 1. Assessment of Mitochondrial Reactive Oxygen Species and Redox Regulation in Stem Cells.
    Thumiah-Mootoo M; Podinic T; Khacho M
    Methods Mol Biol; 2021; 2277():289-297. PubMed ID: 34080158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.
    Tan DQ; Suda T
    Antioxid Redox Signal; 2018 Jul; 29(2):149-168. PubMed ID: 28708000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD.
    Sheshadri P; Kumar A
    Free Radic Res; 2016; 50(5):570-84. PubMed ID: 26899340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of Mitochondria-Targeted Antioxidants to Prevent Oxidative Stress in Pancreatic
    Plecitá-Hlavatá L; Engstová H; Ježek J; Holendová B; Tauber J; Petrásková L; Křen V; Ježek P
    Oxid Med Cell Longev; 2019; 2019():1826303. PubMed ID: 31249641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat.
    Armstrong JS; Whiteman M; Yang H; Jones DP
    Bioessays; 2004 Aug; 26(8):894-900. PubMed ID: 15273991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species.
    Mailloux RJ
    Redox Biol; 2015; 4():381-98. PubMed ID: 25744690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis.
    Doughan AK; Dikalov SI
    Antioxid Redox Signal; 2007 Nov; 9(11):1825-36. PubMed ID: 17854275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.
    Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B
    J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of Reactive Oxygen Species (ROS) and Mitochondrial ROS in AMPK Knockout Mice Blood Vessels.
    Wang Q; Zou MH
    Methods Mol Biol; 2018; 1732():507-517. PubMed ID: 29480496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox Regulation of the Superoxide Dismutases SOD3 and SOD2 in the Pulmonary Circulation.
    Hernandez-Saavedra D; Swain K; Tuder R; Petersen SV; Nozik-Grayck E
    Adv Exp Med Biol; 2017; 967():57-70. PubMed ID: 29047081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and Molecular Alterations Following Arsenic-Induced Oxidative Stress and Mitochondrial Dysfunction in Rat Brain.
    Prakash C; Soni M; Kumar V
    Biol Trace Elem Res; 2015 Sep; 167(1):121-9. PubMed ID: 25764338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism.
    Jezek P; Hlavatá L
    Int J Biochem Cell Biol; 2005 Dec; 37(12):2478-503. PubMed ID: 16103002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible role of avian uncoupling protein in down-regulating mitochondrial superoxide production in skeletal muscle of fasted chickens.
    Abe T; Mujahid A; Sato K; Akiba Y; Toyomizu M
    FEBS Lett; 2006 Sep; 580(20):4815-22. PubMed ID: 16904672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Coenzyme Q Redox Homeostasis and Reactive Oxygen Species Production.
    Jarmuszkiewicz W; Dominiak K; Budzinska A; Wojcicki K; Galganski L
    Front Biosci (Landmark Ed); 2023 Mar; 28(3):61. PubMed ID: 37005764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for Mitochondria and Mitophagy Flux Analyses in Stem Cells of Resting and Regenerating Skeletal Muscle.
    García-Prat L; Martínez-Vicente M; Muñoz-Cánoves P
    Methods Mol Biol; 2016; 1460():223-40. PubMed ID: 27492176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bcl-2 Regulates Reactive Oxygen Species Signaling and a Redox-Sensitive Mitochondrial Proton Leak in Mouse Pancreatic β-Cells.
    Aharoni-Simon M; Shumiatcher R; Yeung A; Shih AZ; Dolinsky VW; Doucette CA; Luciani DS
    Endocrinology; 2016 Jun; 157(6):2270-81. PubMed ID: 27070098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial reactive oxygen species production and elimination.
    Nickel A; Kohlhaas M; Maack C
    J Mol Cell Cardiol; 2014 Aug; 73():26-33. PubMed ID: 24657720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells.
    Lambertucci RH; Hirabara SM; Silveira Ldos R; Levada-Pires AC; Curi R; Pithon-Curi TC
    J Cell Physiol; 2008 Sep; 216(3):796-804. PubMed ID: 18446788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox regulation of plant stem cell fate.
    Zeng J; Dong Z; Wu H; Tian Z; Zhao Z
    EMBO J; 2017 Oct; 36(19):2844-2855. PubMed ID: 28838936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of heat stress-induced production of mitochondrial reactive oxygen species on NADPH oxidase and heme oxygenase-1 mRNA levels in avian muscle cells.
    Kikusato M; Yoshida H; Furukawa K; Toyomizu M
    J Therm Biol; 2015 Aug; 52():8-13. PubMed ID: 26267493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.