BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34080844)

  • 21. Structure of the TSC2 GAP Domain: Mechanistic Insight into Catalysis and Pathogenic Mutations.
    Hansmann P; Brückner A; Kiontke S; Berkenfeld B; Seebohm G; Brouillard P; Vikkula M; Jansen FE; Nellist M; Oeckinghaus A; Kümmel D
    Structure; 2020 Aug; 28(8):933-942.e4. PubMed ID: 32502382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex.
    Zeng LH; Rensing NR; Zhang B; Gutmann DH; Gambello MJ; Wong M
    Hum Mol Genet; 2011 Feb; 20(3):445-54. PubMed ID: 21062901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The tuberous sclerosis complex: balancing proliferation and survival.
    Tomasoni R; Mondino A
    Biochem Soc Trans; 2011 Apr; 39(2):466-71. PubMed ID: 21428921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuberous sclerosis complex: Recent advances in manifestations and therapy.
    Wataya-Kaneda M; Uemura M; Fujita K; Hirata H; Osuga K; Kagitani-Shimono K; Nonomura N;
    Int J Urol; 2017 Sep; 24(9):681-691. PubMed ID: 28667702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis.
    Kwiatkowski DJ
    Cancer Biol Ther; 2003; 2(5):471-6. PubMed ID: 14614311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mTORC1 enhancement of STIM1-mediated store-operated Ca2+ entry constrains tuberous sclerosis complex-related tumor development.
    Peng H; Liu J; Sun Q; Chen R; Wang Y; Duan J; Li C; Li B; Jing Y; Chen X; Mao Q; Xu KF; Walker CL; Li J; Wang J; Zhang H
    Oncogene; 2013 Sep; 32(39):4702-11. PubMed ID: 23108404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuberous sclerosis complex and DNA repair.
    Habib SL
    Adv Exp Med Biol; 2010; 685():84-94. PubMed ID: 20687497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dysregulation of autophagy in melanocytes contributes to hypopigmented macules in tuberous sclerosis complex.
    Yang F; Yang L; Wataya-Kaneda M; Hasegawa J; Yoshimori T; Tanemura A; Tsuruta D; Katayama I
    J Dermatol Sci; 2018 Feb; 89(2):155-164. PubMed ID: 29146131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional assessment of TSC2 variants identified in individuals with tuberous sclerosis complex.
    Hoogeveen-Westerveld M; Ekong R; Povey S; Mayer K; Lannoy N; Elmslie F; Bebin M; Dies K; Thompson C; Sparagana SP; Davies P; van Eeghen AM; Thiele EA; van den Ouweland A; Halley D; Nellist M
    Hum Mutat; 2013 Jan; 34(1):167-75. PubMed ID: 22903760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does tuberin function as a tumor suppressor in the cerebral lesions of tuberous sclerosis? Early observations.
    Short MP
    Brain Pathol; 1996 Oct; 6(4):375-6. PubMed ID: 8944309
    [No Abstract]   [Full Text] [Related]  

  • 31. The tuberous sclerosis complex genes in tumor development.
    Mak BC; Yeung RS
    Cancer Invest; 2004; 22(4):588-603. PubMed ID: 15565817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decreased rates of cerebral protein synthesis measured in vivo in a mouse model of Tuberous Sclerosis Complex: unexpected consequences of reduced tuberin.
    Saré RM; Huang T; Burlin T; Loutaev I; Smith CB
    J Neurochem; 2018 Jun; 145(5):417-425. PubMed ID: 29364507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuberous sclerosis genes regulate cellular 14-3-3 protein levels.
    Hengstschläger M; Rosner M; Fountoulakis M; Lubec G
    Biochem Biophys Res Commun; 2003 Dec; 312(3):676-83. PubMed ID: 14680818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental expression of the tuberous sclerosis proteins tuberin and hamartin.
    Murthy V; Stemmer-Rachamimov AO; Haddad LA; Roy JE; Cutone AN; Beauchamp RL; Smith N; Louis DN; Ramesh V
    Acta Neuropathol; 2001 Mar; 101(3):202-10. PubMed ID: 11307618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent.
    Parkhitko A; Myachina F; Morrison TA; Hindi KM; Auricchio N; Karbowniczek M; Wu JJ; Finkel T; Kwiatkowski DJ; Yu JJ; Henske EP
    Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12455-60. PubMed ID: 21746920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuberous sclerosis and tuberin: what do we learn from in situ localization data in the human brain?
    Wiestler OD; Wolf HK
    Brain Pathol; 1996 Oct; 6(4):376-7. PubMed ID: 8944310
    [No Abstract]   [Full Text] [Related]  

  • 37. Reduction of expression of tuberin, the tuberous-sclerosis-complex-gene-2 product in tuberous sclerosis complex associated connective tissue nevi and sporadic squamous and basal cell carcinomas.
    Wienecke R; Klemm E; Karparti S; Swanson NA; Green AJ; DeClue JE
    J Cutan Pathol; 2002 May; 29(5):287-90. PubMed ID: 12100629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for separable functions of tuberous sclerosis gene products in mammalian cell cycle regulation.
    Miloloza A; Kubista M; Rosner M; Hengstschläger M
    J Neuropathol Exp Neurol; 2002 Feb; 61(2):154-63. PubMed ID: 11853018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers.
    Talos DM; Kwiatkowski DJ; Cordero K; Black PM; Jensen FE
    Ann Neurol; 2008 Apr; 63(4):454-65. PubMed ID: 18350576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuberous sclerosis complex: molecular pathogenesis and animal models.
    Piedimonte LR; Wailes IK; Weiner HL
    Neurosurg Focus; 2006 Jan; 20(1):E4. PubMed ID: 16459994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.