These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 34080850)
1. Dual Regulation of Cytoplasm and Peroxisomes for Improved Α-Farnesene Production in Recombinant Liu H; Chen SL; Xu JZ; Zhang WG ACS Synth Biol; 2021 Jun; 10(6):1563-1573. PubMed ID: 34080850 [TBL] [Abstract][Full Text] [Related]
2. Cofactor Engineering for Efficient Production of α-Farnesene by Rational Modification of NADPH and ATP Regeneration Pathway in Chen SL; Liu TS; Zhang WG; Xu JZ Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675279 [TBL] [Abstract][Full Text] [Related]
3. Characterization and engineering of peroxisome targeting sequences for compartmentalization engineering in Pichia pastoris. Ye C; Hong H; Gao J; Li M; Gou Y; Gao D; Dong C; Huang L; Xu Z; Lian J Biotechnol Bioeng; 2024 Jul; 121(7):2091-2105. PubMed ID: 38568751 [TBL] [Abstract][Full Text] [Related]
4. Engineering a versatile yeast platform for sesquiterpene production from glucose or methanol. Gao L; Zhang K; Shen Y; Cai P; Zhou YJ Biotechnol J; 2024 Aug; 19(8):e2400261. PubMed ID: 39115346 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Pichia pastoris for production of isopentanol (3-Methyl-1-butanol). Siripong W; Angela C; Tanapongpipat S; Runguphan W Enzyme Microb Technol; 2020 Aug; 138():109557. PubMed ID: 32527534 [TBL] [Abstract][Full Text] [Related]
6. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production. Zhang C; Li M; Zhao GR; Lu W J Agric Food Chem; 2020 Feb; 68(5):1382-1389. PubMed ID: 31944688 [TBL] [Abstract][Full Text] [Related]
7. Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica. Liu SC; Liu Z; Wei LJ; Hua Q J Biotechnol; 2020 Aug; 319():74-81. PubMed ID: 32533992 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Pichia pastoris for overproduction of cis-trans nepetalactol. Ye C; Li M; Gao J; Zuo Y; Xiao F; Jiang X; Cheng J; Huang L; Xu Z; Lian J Metab Eng; 2024 Jul; 84():83-94. PubMed ID: 38897449 [TBL] [Abstract][Full Text] [Related]
9. Peroxisome targeting of lycopene pathway enzymes in Pichia pastoris. Lee PC Methods Mol Biol; 2012; 898():161-9. PubMed ID: 22711124 [TBL] [Abstract][Full Text] [Related]
10. Metabolic Engineering of Zhang X; Chen S; Lin Y; Li W; Wang D; Ruan S; Yang Y; Liang S ACS Synth Biol; 2023 Oct; 12(10):2961-2972. PubMed ID: 37782893 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism. Zhang Q; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Su X; Huang H; Yao B; Bai Y; Zhang J Microb Cell Fact; 2022 Jun; 21(1):112. PubMed ID: 35659241 [TBL] [Abstract][Full Text] [Related]
12. Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis. Heyman JA; Monosov E; Subramani S J Cell Biol; 1994 Dec; 127(5):1259-73. PubMed ID: 7962088 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of polyhydroxyalkanoate in the peroxisome of Pichia pastoris. Poirier Y; Erard N; MacDonald-Comber Petétot J FEMS Microbiol Lett; 2002 Jan; 207(1):97-102. PubMed ID: 11886758 [TBL] [Abstract][Full Text] [Related]
14. Towards systems metabolic engineering in Pichia pastoris. Schwarzhans JP; Luttermann T; Geier M; Kalinowski J; Friehs K Biotechnol Adv; 2017 Nov; 35(6):681-710. PubMed ID: 28760369 [TBL] [Abstract][Full Text] [Related]
15. Comparing cytosolic expression to peroxisomal targeting of the chimeric L1/L2 (ChiΔH-L2) gene from human papillomavirus type 16 in the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha. Smith JJ; Burke A; Bredell H; van Zyl WH; Görgens JF Yeast; 2012 Sep; 29(9):385-93. PubMed ID: 22926974 [TBL] [Abstract][Full Text] [Related]
16. Pathway reconstruction and metabolic engineering for the de novo and enhancing production of monacolin J in Pichia pastoris. Wu Y; Peng X; Fan D; Han S; Yang X Bioprocess Biosyst Eng; 2024 Nov; 47(11):1789-1801. PubMed ID: 39085651 [TBL] [Abstract][Full Text] [Related]
17. Bioconversion of C1 feedstocks for chemical production using Pichia pastoris. Guo F; Qiao Y; Xin F; Zhang W; Jiang M Trends Biotechnol; 2023 Aug; 41(8):1066-1079. PubMed ID: 36967258 [TBL] [Abstract][Full Text] [Related]
18. Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica. Yang X; Nambou K; Wei L; Hua Q Bioresour Technol; 2016 Sep; 216():1040-8. PubMed ID: 27347651 [TBL] [Abstract][Full Text] [Related]
19. Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources. Wriessnegger T; Gübitz G; Leitner E; Ingolic E; Cregg J; de la Cruz BJ; Daum G Biochim Biophys Acta; 2007 Apr; 1771(4):455-61. PubMed ID: 17293161 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional Downregulation of Methanol Metabolism Key Genes During Yeast Death in Engineered Pichia pastoris. Wang C; Jiang W; Yu C; Xia J Biotechnol J; 2024 Oct; 19(10):e202400328. PubMed ID: 39407414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]