These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34080884)

  • 41. Robust and nanoparticle-free superhydrophobic cotton fabric fabricated from all biological resources for oil/water separation.
    Cheng QY; Zhao XL; Li YD; Weng YX; Zeng JB
    Int J Biol Macromol; 2019 Nov; 140():1175-1182. PubMed ID: 31465799
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gold nanoparticles modified graphene foam with superhydrophobicity and superoleophilicity for oil-water separation.
    Liu S; Wang S; Wang H; Lv C; Miao Y; Chen L; Yang S
    Sci Total Environ; 2021 Mar; 758():143660. PubMed ID: 33248768
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A robust superhydrophobic TiO
    Zhang H; Li Y; Lu Z; Chen L; Huang L; Fan M
    Sci Rep; 2017 Aug; 7(1):9428. PubMed ID: 28842635
    [TBL] [Abstract][Full Text] [Related]  

  • 44. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.
    Liu Q; Chen D; Kang Z
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1859-67. PubMed ID: 25559356
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Closed Pore Structured NiCo
    Li Y; Zheng X; Yan Z; Tian D; Ma J; Zhang X; Jiang L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29177-29184. PubMed ID: 28799749
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oil-Water Separation Polypropylene Foam with Advanced Solvent-Evaporation Induced Coexistence of Microspheres and Microporous Structure.
    Wang X; Zhang M; Schubert DW; Liu X
    Macromol Rapid Commun; 2022 Sep; 43(17):e2200177. PubMed ID: 35355354
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel Superhydrophobic Copper Mesh-Based Centrifugal Device for Edible Oil-Water Separation.
    Zhang F; Wu R; Zhang H; Ye Y; Chen Z; Zhang A
    ACS Omega; 2024 Apr; 9(14):16303-16310. PubMed ID: 38617616
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel fabrication of a robust superhydrophobic PU@ZnO@Fe
    Tran VT; Lee BK
    Sci Rep; 2017 Dec; 7(1):17520. PubMed ID: 29235525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Corrosion resistance for superwetting immiscible oil/water separation porous materials.
    Rong W; Zhang H; Tuo Y; Chen W; Liu X
    RSC Adv; 2019 Apr; 9(23):12854-12863. PubMed ID: 35520797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation.
    Cao M; Luo X; Ren H; Feng J
    J Colloid Interface Sci; 2018 Feb; 512():567-574. PubMed ID: 29100161
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Superhydrophobic Methylated Silica Sol for Effective Oil-Water Separation.
    Li J; Ding H; Zhang H; Guo C; Hong X; Sun L; Ding F
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32069780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robust superhydrophobic and superoleophilic filter paper via atom transfer radical polymerization for oil/water separation.
    Wu H; Wu L; Lu S; Lin X; Xiao H; Ouyang X; Cao S; Chen L; Huang L
    Carbohydr Polym; 2018 Feb; 181():419-425. PubMed ID: 29253991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Superhydrophobic Surface with Stepwise Multilayered Micro- and Nanostructure and an Investigation of Its Corrosion Resistance.
    Tong W; Karthik N; Li J; Wang N; Xiong D
    Langmuir; 2019 Nov; 35(47):15078-15085. PubMed ID: 31682454
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation.
    Ma W; Ding Y; Zhang M; Gao S; Li Y; Huang C; Fu G
    J Hazard Mater; 2020 Feb; 384():121476. PubMed ID: 31699485
    [TBL] [Abstract][Full Text] [Related]  

  • 55. One-pot room-temperature synthesis of covalent organic framework-coated superhydrophobic sponges for highly efficient oil-water separation.
    Li J; Yang Y; Ma W; Li G; Lu Q; Lin Z
    J Hazard Mater; 2021 Jun; 411():125190. PubMed ID: 33858120
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanochemical robust, magnetic-driven, superhydrophobic 3D porous materials for contaminated oil recovery.
    Liu L; Pan Y; Bhushan B; Zhao X
    J Colloid Interface Sci; 2019 Mar; 538():25-33. PubMed ID: 30496893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superhydrophobic Foams with Chemical- and Mechanical-Damage-Healing Abilities Enabled by Self-Healing Polymers.
    Fu Y; Xu F; Weng D; Li X; Li Y; Sun J
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37285-37294. PubMed ID: 31510750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facile Two-Step Strategy for the Construction of a Mechanically Stable Three-Dimensional Superhydrophobic Structure for Continuous Oil-Water Separation.
    Wang Y; Zhu Y; Yang C; Liu J; Jiang W; Liang B
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24149-24156. PubMed ID: 29956538
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioinspired Superhydrophobic/Superhydrophilic Janus Copper Foam for On-Demand Oil/Water Separation.
    Liu C; Peng Y; Huang C; Ning Y; Shang J; Li Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11981-11988. PubMed ID: 35220721
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A versatile approach to produce superhydrophobic materials used for oil-water separation.
    Zhu X; Zhang Z; Ge B; Men X; Zhou X; Xue Q
    J Colloid Interface Sci; 2014 Oct; 432():105-8. PubMed ID: 25086383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.