These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34081029)

  • 1. Microscopic deformation mechanism and main influencing factors of carbon nanotube coated graphene foams under uniaxial compression.
    Wang S; Wang C; Khan MB; Chen S
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical property and microscopic deformation mechanism of nanoparticle-contained graphene foam materials under uniaxial compression.
    Khan MB; Wang C; Wang S; Fang D; Chen S
    Nanotechnology; 2021 Mar; 32(11):115701. PubMed ID: 33361558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanical response and microscopic deformation mechanism of graphene foams tuned by long carbon nanotubes and short crosslinkers.
    Wang S; Yang T; Wang C; Liang L
    Phys Chem Chem Phys; 2022 Dec; 25(1):192-202. PubMed ID: 36484421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.
    Pan D; Wang C; Wang TC; Yao Y
    ACS Nano; 2017 Sep; 11(9):8988-8997. PubMed ID: 28825792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Foam: Hole-Flake Network for Uniaxial Supercompression and Recovery Behavior.
    Pan D; Wang C; Wang X
    ACS Nano; 2018 Nov; 12(11):11491-11502. PubMed ID: 30394082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Properties and Deformation Mechanisms of Graphene Foams with Bi-Modal Sheet Thickness by Coarse-Grained Molecular Dynamics Simulations.
    Liu S; Lyu M; Wang C
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality-Dependent Mechanical Properties of Bundles and Thin Films Composed of Covalently Cross-Linked Carbon Nanotubes.
    Kayang KW; Banna AH; Volkov AN
    Langmuir; 2022 Feb; 38(6):1977-1994. PubMed ID: 35104409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain Hardening in Graphene Foams under Shear.
    Yang T; Wang C; Wu Z
    ACS Omega; 2021 Sep; 6(35):22780-22790. PubMed ID: 34514249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Damping and High Strength of Graphene-Coated Nickel Hybrid Foams.
    Wang H; Ma C; Zhang W; Cheng HM; Zeng Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42690-42696. PubMed ID: 31638382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural evolution of carbon nanotube fibers: deformation and strength mechanism.
    Liu X; Lu W; Ayala OM; Wang LP; Karlsson AM; Yang Q; Chou TW
    Nanoscale; 2013 Mar; 5(5):2002-8. PubMed ID: 23370166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Graphene Aerogel with High Mechanical Stability and Microwave Absorption Ability via Combining Surface Support of Metallic-CNTs and Interfacial Cross-Linking by Magnetic Nanoparticles.
    Qin Y; Zhang Y; Qi N; Wang Q; Zhang X; Li Y
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10409-10417. PubMed ID: 30776887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Mechanical Response of Elastomeric Graphene Networks.
    Ni N; Barg S; Garcia-Tunon E; Macul Perez F; Miranda M; Lu C; Mattevi C; Saiz E
    Sci Rep; 2015 Sep; 5():13712. PubMed ID: 26348898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Properties of Graphene Networks under Compression: A Molecular Dynamics Simulation.
    Polyakova PV; Baimova JA
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanotube-Multilayered Graphene Edge Plane Core-Shell Hybrid Foams for Ultrahigh-Performance Electromagnetic-Interference Shielding.
    Song Q; Ye F; Yin X; Li W; Li H; Liu Y; Li K; Xie K; Li X; Fu Q; Cheng L; Zhang L; Wei B
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28626927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams.
    Shen Z; Ye H; Zhou C; Kröger M; Li Y
    Nanotechnology; 2018 Mar; 29(10):104001. PubMed ID: 29311421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Investigation on 3D Graphene-CNT Hybrid Foams with Different Interactions.
    Kim HS; Lee SK; Wang M; Kang J; Sun Y; Jung JW; Kim K; Kim SM; Nam JD; Suhr J
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30200583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultralight anisotropic foams from layered aligned carbon nanotube sheets.
    Faraji S; Stano KL; Yildiz O; Li A; Zhu Y; Bradford PD
    Nanoscale; 2015 Oct; 7(40):17038-47. PubMed ID: 26419855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Soft Phase and Carbon Nanotube Content on the Properties of Hierarchical AZ61 Matrix Composite with Isolated Soft Phase.
    Ding Y; Jiao S; Zhang Y; Shi Z; Hu J; Wang X; Li Z; Wang H; Guo X
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating the effects of carbon nanotube continuity and interfacial bonding on composite strength and stiffness.
    Jensen BD; Odegard GM; Kim JW; Sauti G; Siochi EJ; Wise KE
    Compos Sci Technol; 2018 Sep; 166():10-19. PubMed ID: 31359899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of CNT-reinforced Ni
    Wang Z; Yang F; Shang J; Wei N; Kou L; Li C
    J Phys Condens Matter; 2020 May; 32(20):205301. PubMed ID: 31935697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.