These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34081058)

  • 1. Effects of Including Sprints in LIT Sessions during a 14-d Camp on Muscle Biology and Performance Measures in Elite Cyclists.
    Almquist NW; Wilhelmsen M; Ellefsen S; Sandbakk Ø; Rønnestad BR
    Med Sci Sports Exerc; 2021 Nov; 53(11):2333-2345. PubMed ID: 34081058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Inclusion of Sprints in Low-Intensity Sessions During the Transition Period of Elite Cyclists Improves Endurance Performance 6 Weeks Into the Subsequent Preparatory Period.
    Taylor M; Almquist N; Rønnestad B; Tjønna AE; Kristoffersen M; Spencer M; Sandbakk Ø; Skovereng K
    Int J Sports Physiol Perform; 2021 Oct; 16(10):1502-1509. PubMed ID: 33819914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Including Sprints in One Weekly Low-Intensity Training Session During the Transition Period of Elite Cyclists.
    Almquist NW; Løvlien I; Byrkjedal PT; Spencer M; Kristoffersen M; Skovereng K; Sandbakk Ø; Rønnestad BR
    Front Physiol; 2020; 11():1000. PubMed ID: 33041839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Aerobic and Anaerobic Contribution During Repeated 30-s Sprints in Elite Cyclists.
    Almquist NW; Sandbakk Ø; Rønnestad BR; Noordhof D
    Front Physiol; 2021; 12():692622. PubMed ID: 34122152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Block periodization of high-intensity aerobic intervals provides superior training effects in trained cyclists.
    Rønnestad BR; Hansen J; Ellefsen S
    Scand J Med Sci Sports; 2014 Feb; 24(1):34-42. PubMed ID: 22646668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists.
    Hansen M; Bangsbo J; Jensen J; Krause-Jensen M; Bibby BM; Sollie O; Hall UA; Madsen K
    J Int Soc Sports Nutr; 2016; 13():9. PubMed ID: 26949378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of including sprints during prolonged cycling on hormonal and muscular responses and recovery in elite cyclists.
    Almquist NW; Ellefsen S; Sandbakk Ø; Rønnestad BR
    Scand J Med Sci Sports; 2021 Mar; 31(3):529-541. PubMed ID: 33113253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Psychophysiological Responses to Repeated-Sprint Training in Normobaric Hypoxia and Normoxia.
    Brocherie F; Millet GP; Girard O
    Int J Sports Physiol Perform; 2017 Jan; 12(1):115-123. PubMed ID: 27139930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 10 weeks of heavy strength training improves performance-related measurements in elite cyclists.
    Rønnestad BR; Hansen J; Nygaard H
    J Sports Sci; 2017 Jul; 35(14):1435-1441. PubMed ID: 27486014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 12 weeks of block periodization on performance and performance indices in well-trained cyclists.
    Rønnestad BR; Ellefsen S; Nygaard H; Zacharoff EE; Vikmoen O; Hansen J; Hallén J
    Scand J Med Sci Sports; 2014 Apr; 24(2):327-35. PubMed ID: 23134196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Scientific Approach to Improve Physiological Capacity of an Elite Cyclist.
    Rønnestad BR; Hansen J
    Int J Sports Physiol Perform; 2018 Mar; 13(3):390-393. PubMed ID: 28657821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of reduced-volume of sprint interval training and the time course of physiological and performance adaptations.
    Yamagishi T; Babraj J
    Scand J Med Sci Sports; 2017 Dec; 27(12):1662-1672. PubMed ID: 28124388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and performance changes from the addition of a sprint interval program to wrestling training.
    Farzad B; Gharakhanlou R; Agha-Alinejad H; Curby DG; Bayati M; Bahraminejad M; Mäestu J
    J Strength Cond Res; 2011 Sep; 25(9):2392-9. PubMed ID: 21849912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreasing sprint duration from 20 to 10 s during reduced-exertion high-intensity interval training (REHIT) attenuates the increase in maximal aerobic capacity but has no effect on affective and perceptual responses.
    Nalçakan GR; Songsorn P; Fitzpatrick BL; Yüzbasioglu Y; Brick NE; Metcalfe RS; Vollaard NBJ
    Appl Physiol Nutr Metab; 2018 Apr; 43(4):338-344. PubMed ID: 29172029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combined effect of sprint interval training and postexercise blood flow restriction on critical power, capillary growth, and mitochondrial proteins in trained cyclists.
    Mitchell EA; Martin NRW; Turner MC; Taylor CW; Ferguson RA
    J Appl Physiol (1985); 2019 Jan; 126(1):51-59. PubMed ID: 30335575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated-Sprint Training in Hypoxia Induced by Voluntary Hypoventilation in Swimming.
    Trincat L; Woorons X; Millet GP
    Int J Sports Physiol Perform; 2017 Mar; 12(3):329-335. PubMed ID: 27294771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced volume and increased training intensity elevate muscle Na+-K+ pump alpha2-subunit expression as well as short- and long-term work capacity in humans.
    Bangsbo J; Gunnarsson TP; Wendell J; Nybo L; Thomassen M
    J Appl Physiol (1985); 2009 Dec; 107(6):1771-80. PubMed ID: 19797693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological profile of elite Bicycle Motocross cyclists and physiological-perceptual demands of a Bicycle Motocross race simulation.
    Petruolo A; Connolly DR; Bosio A; Induni M; Rampinini E
    J Sports Med Phys Fitness; 2020 Sep; 60(9):1173-1184. PubMed ID: 32406391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impairment of Performance Variables After In-Season Strength-Training Cessation in Elite Cyclists.
    Rønnestad BR; Hansen J; Hollan I; Spencer M; Ellefsen S
    Int J Sports Physiol Perform; 2016 Sep; 11(6):727-735. PubMed ID: 26641569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological adaptations to repeated sprint training in hypoxia induced by voluntary hypoventilation at low lung volume.
    Woorons X; Millet GP; Mucci P
    Eur J Appl Physiol; 2019 Sep; 119(9):1959-1970. PubMed ID: 31286240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.