These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34081307)

  • 21. Modulation of oxidant and antioxidant homeostasis in the cyanobacterium Nostoc muscorum Meg1 under UV-C radiation stress.
    Phukan T; Syiem MB
    Aquat Toxicol; 2019 Aug; 213():105228. PubMed ID: 31229888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular responses and biodegradation of amoxicillin in Microcystis aeruginosa at different nitrogen levels.
    Liu Y; Wang F; Chen X; Zhang J; Gao B
    Ecotoxicol Environ Saf; 2015 Jan; 111():138-45. PubMed ID: 25450926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultraviolet radiation does not increase oxidative stress in the lizard Psammodromus algirus along an elevational gradient.
    Reguera S; Zamora-Camacho FJ; Melero E; García-Mesa S; Trenzado CE; Cabrerizo MJ; Sanz A; Moreno-Rueda G
    Comp Biochem Physiol A Mol Integr Physiol; 2015 May; 183():20-6. PubMed ID: 25535112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Temperature on The UV-B Sensitivity of Toxic Cyanobacteria Microcystis aeruginosa CS558 and Anabaena circinalis CS537.
    Islam MA; Beardall J
    Photochem Photobiol; 2020 Jul; 96(4):936-940. PubMed ID: 31907933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early and efficient induction of antioxidant defense system in Mytilus galloprovincialis embryos exposed to metals and heat stress.
    Boukadida K; Cachot J; Clérandeaux C; Gourves PY; Banni M
    Ecotoxicol Environ Saf; 2017 Apr; 138():105-112. PubMed ID: 28033516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa.
    Liu Y; Guan Y; Gao B; Yue Q
    Ecotoxicol Environ Saf; 2012 Dec; 86():23-30. PubMed ID: 23017252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antioxidant responses in cyanobacterium Microcystis aeruginosa caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations.
    Mao F; He Y; Gin KY
    J Hazard Mater; 2020 Sep; 396():122587. PubMed ID: 32335379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antioxidant enzymes expression in Pseudomonas aeruginosa exposed to UV-C radiation.
    Salma KB; Lobna M; Sana K; Kalthoum C; Imene O; Abdelwaheb C
    J Basic Microbiol; 2016 Jul; 56(7):736-40. PubMed ID: 27059814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.
    Chen L; Mao F; Kirumba GC; Jiang C; Manefield M; He Y
    Ecotoxicol Environ Saf; 2015 Dec; 122():126-35. PubMed ID: 26232039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microcystin accumulation and antioxidant responses in the freshwater clam Diplodon chilensis patagonicus upon subchronic exposure to toxic Microcystis aeruginosa.
    Sabatini SE; Brena BM; Luquet CM; San Julián M; Pirez M; Carmen Ríos de Molina MD
    Ecotoxicol Environ Saf; 2011 Jul; 74(5):1188-94. PubMed ID: 21477863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antioxidant and metabolism responses to polyphenol stress in cyanobacterium Microcystis aeruginosa.
    Ni LX; Acharya K; Hao XY; Li SY
    J Environ Sci Health B; 2013; 48(2):153-61. PubMed ID: 23305284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antioxidant enzyme activities of Microcystis aeruginosa in response to nonylphenols and degradation of nonylphenols by M. aeruginosa.
    Wang J; Xie P
    Environ Geochem Health; 2007 Oct; 29(5):375-83. PubMed ID: 17342429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasticity of protective mechanisms only partially explains interactive effects of temperature and UVR on upper thermal limits.
    Kern P; Cramp RL; Seebacher F; Ghanizadeh Kazerouni E; Franklin CE
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Dec; 190():75-82. PubMed ID: 26408107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of increasing temperature on antioxidant defense system and oxidative stress parameters in the Antarctic fish Notothenia coriiceps and Notothenia rossii.
    Klein RD; Borges VD; Rosa CE; Colares EP; Robaldo RB; Martinez PE; Bianchini A
    J Therm Biol; 2017 Aug; 68(Pt A):110-118. PubMed ID: 28689712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultraviolet radiation modulates nuclear factor kappa B activation in human lens epithelial cells.
    Boileau TW; Bray TM; Bomser JA
    J Biochem Mol Toxicol; 2003; 17(2):108-13. PubMed ID: 12717744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation.
    Buma AG; Helbling EW; de Boer MK; Villafañe VE
    J Photochem Photobiol B; 2001 Sep; 62(1-2):9-18. PubMed ID: 11693371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl.
    Du Y; Ye J; Wu L; Yang C; Wang L; Hu X
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7752-7763. PubMed ID: 28127689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.
    Chen L; Gin KY; He Y
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3586-95. PubMed ID: 26490939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions.
    Chia MA; Cordeiro-Araújo MK; Lorenzi AS; Bittencourt-Oliveira MDC
    Ecotoxicol Environ Saf; 2017 Aug; 142():189-199. PubMed ID: 28411514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity.
    Wolinski L; Modenutti B; Souza MS; Balseiro E
    Environ Pollut; 2016 Jun; 213():135-142. PubMed ID: 26895537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.