These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34081320)

  • 1. Practical segmentation of nuclei in brightfield cell images with neural networks trained on fluorescently labelled samples.
    Fishman D; Salumaa SO; Majoral D; Laasfeld T; Peel S; Wildenhain J; Schreiner A; Palo K; Parts L
    J Microsc; 2021 Oct; 284(1):12-24. PubMed ID: 34081320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images.
    Mela CA; Liu Y
    BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images.
    Ali MAS; Misko O; Salumaa SO; Papkov M; Palo K; Fishman D; Parts L
    SLAS Discov; 2021 Oct; 26(9):1125-1137. PubMed ID: 34167359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation.
    Kromp F; Fischer L; Bozsaky E; Ambros IM; Dorr W; Beiske K; Ambros PF; Hanbury A; Taschner-Mandl S
    IEEE Trans Med Imaging; 2021 Jul; 40(7):1934-1949. PubMed ID: 33784615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ArtSeg-Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations.
    Ali MAS; Hollo K; Laasfeld T; Torp J; Tahk MJ; Rinken A; Palo K; Parts L; Fishman D
    Sci Rep; 2022 Jul; 12(1):11404. PubMed ID: 35794119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of learning parameters on the performance of the U-Net architecture for cell nuclei segmentation from microscopic cell images.
    Jena B; Digdarshi D; Paul S; Nayak GK; Saxena S
    Microscopy (Oxf); 2023 Jun; 72(3):249-264. PubMed ID: 36409001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound.
    Gómez-Flores W; Coelho de Albuquerque Pereira W
    Comput Biol Med; 2020 Nov; 126():104036. PubMed ID: 33059238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MDC-net: A new convolutional neural network for nucleus segmentation in histopathology images with distance maps and contour information.
    Liu X; Guo Z; Cao J; Tang J
    Comput Biol Med; 2021 Aug; 135():104543. PubMed ID: 34146800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images.
    Hussain E; Mahanta LB; Das CR; Choudhury M; Chowdhury M
    Artif Intell Med; 2020 Jul; 107():101897. PubMed ID: 32828445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks.
    Lagree A; Mohebpour M; Meti N; Saednia K; Lu FI; Slodkowska E; Gandhi S; Rakovitch E; Shenfield A; Sadeghi-Naini A; Tran WT
    Sci Rep; 2021 Apr; 11(1):8025. PubMed ID: 33850222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion of encoder-decoder deep networks improves delineation of multiple nuclear phenotypes.
    Khoshdeli M; Winkelmaier G; Parvin B
    BMC Bioinformatics; 2018 Aug; 19(1):294. PubMed ID: 30086715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilizing convolutional neural networks for discriminating cancer and stromal cells in three-dimensional cell culture images with nuclei counterstain.
    Nguyen HT; Pietraszek N; Shelton SE; Arthur K; Kamm RD
    J Biomed Opt; 2024 Jun; 29(Suppl 2):S22710. PubMed ID: 39184400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Encoder Attention U-net for Nuclei Segmentation.
    Vahadane A; B A; Majumdar S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3205-3208. PubMed ID: 34891923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence lifetime image microscopy prediction with convolutional neural networks for cell detection and classification in tissues.
    Smolen JA; Wooley KL
    PNAS Nexus; 2022 Nov; 1(5):pgac235. PubMed ID: 36712353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic image annotation for fluorescent cell nuclei segmentation.
    Englbrecht F; Ruider IE; Bausch AR
    PLoS One; 2021; 16(4):e0250093. PubMed ID: 33861785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CellSeg: a robust, pre-trained nucleus segmentation and pixel quantification software for highly multiplexed fluorescence images.
    Lee MY; Bedia JS; Bhate SS; Barlow GL; Phillips D; Fantl WJ; Nolan GP; Schürch CM
    BMC Bioinformatics; 2022 Jan; 23(1):46. PubMed ID: 35042474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated thalamic nuclei segmentation using multi-planar cascaded convolutional neural networks.
    Majdi MS; Keerthivasan MB; Rutt BK; Zahr NM; Rodriguez JJ; Saranathan M
    Magn Reson Imaging; 2020 Nov; 73():45-54. PubMed ID: 32828985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.