These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34081455)

  • 21. Parametric thermodynamic analysis and economic assessment of a novel solar heliostat-molten carbonate fuel cell system for electricity and fresh water production.
    Sadeghi S; Askari IB
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5469-5495. PubMed ID: 34420171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of carbon dioxide emission and the consumption of electrical energy, fossil fuel energy, and renewable energy, on economic performance: evidence from Pakistan.
    Rehman A; Rauf A; Ahmad M; Chandio AA; Deyuan Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21760-21773. PubMed ID: 31134543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
    Vanneste J; Van Gerven T; Vander Putten E; Van der Bruggen B; Helsen L
    Sci Total Environ; 2011 Sep; 409(19):3595-602. PubMed ID: 21719072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.
    Samaras C; Meisterling K
    Environ Sci Technol; 2008 May; 42(9):3170-6. PubMed ID: 18522090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.
    Züttel A; Mauron P; Kato S; Callini E; Holzer M; Huang J
    Chimia (Aarau); 2015; 69(5):264-8. PubMed ID: 26507344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Life cycle sustainability assessment of synthetic fuels from date palm waste.
    Ben Hnich K; Martín-Gamboa M; Khila Z; Hajjaji N; Dufour J; Iribarren D
    Sci Total Environ; 2021 Nov; 796():148961. PubMed ID: 34271384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Metal-Free Electrode: From Biomass-Derived Carbon to Hydrogen.
    Ding Y; Greiner M; Schlögl R; Heumann S
    ChemSusChem; 2020 Aug; 13(16):4064-4068. PubMed ID: 32428374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of CO
    Amin NAS; Talebian-Kiakalaieh A
    Waste Manag; 2018 Mar; 73():256-264. PubMed ID: 29150259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coal and biomass to fuels and power.
    Williams RH; Liu G; Kreutz TG; Larson ED
    Annu Rev Chem Biomol Eng; 2011; 2():529-53. PubMed ID: 22432630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).
    van der Giesen C; Kleijn R; Kramer GJ
    Environ Sci Technol; 2014 Jun; 48(12):7111-21. PubMed ID: 24832016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental and economic evaluation of bioenergy in Ontario, Canada.
    Zhang Y; Habibi S; MacLean HL
    J Air Waste Manag Assoc; 2007 Aug; 57(8):919-33. PubMed ID: 17824282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of two U.S. power-plant carbon dioxide emissions data sets.
    Ackerman KV; Sundquist ET
    Environ Sci Technol; 2008 Aug; 42(15):5688-93. PubMed ID: 18754494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling energy performance using a new hybrid DE/MARS-based approach for fossil-fuel thermal power stations.
    García-Nieto PJ; García-Gonzalo E; Paredes-Sánchez JP; Bernardo Sánchez A
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4417-4429. PubMed ID: 32944856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.
    Mínguez M; Jiménez A; Rodríguez J; González C; López I; Nieto R
    Waste Manag Res; 2013 Apr; 31(4):401-12. PubMed ID: 23444152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.
    Cai H; Wang MQ
    Environ Sci Technol; 2014 Oct; 48(20):12445-53. PubMed ID: 25259852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Life cycle assessment of biohydrogen production as a transportation fuel in Germany.
    Wulf C; Kaltschmitt M
    Bioresour Technol; 2013 Dec; 150():466-75. PubMed ID: 24050848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Life Cycle Greenhouse Gas Emissions and Costs of Production of Diesel and Jet Fuel from Municipal Solid Waste.
    Suresh P; Malina R; Staples MD; Lizin S; Olcay H; Blazy D; Pearlson MN; Barrett SRH
    Environ Sci Technol; 2018 Nov; 52(21):12055-12065. PubMed ID: 30289698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.
    Methling T; Armbrust N; Haitz T; Speidel M; Poboss N; Braun-Unkhoff M; Dieter H; Kempter-Regel B; Kraaij G; Schliessmann U; Sterr Y; Wörner A; Hirth T; Riedel U; Scheffknecht G
    Bioresour Technol; 2014 Oct; 169():510-517. PubMed ID: 25086436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomass pellets for power generation in India: a techno-economic evaluation.
    Purohit P; Chaturvedi V
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29614-29632. PubMed ID: 30141169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.