These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34081459)

  • 61. New approach to tryptophan production by Escherichia coli: genetic manipulation of composite plasmids in vitro.
    Aiba S; Tsunekawa H; Imanaka T
    Appl Environ Microbiol; 1982 Feb; 43(2):289-97. PubMed ID: 7036897
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improving L-serine formation by Escherichia coli by reduced uptake of produced L-serine.
    Wang C; Wu J; Shi B; Shi J; Zhao Z
    Microb Cell Fact; 2020 Mar; 19(1):66. PubMed ID: 32169078
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biosensor-aided high-throughput screening of hyper-producing cells for malonyl-CoA-derived products.
    Li H; Chen W; Jin R; Jin JM; Tang SY
    Microb Cell Fact; 2017 Nov; 16(1):187. PubMed ID: 29096626
    [TBL] [Abstract][Full Text] [Related]  

  • 64. RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes.
    Abatemarco J; Sarhan MF; Wagner JM; Lin JL; Liu L; Hassouneh W; Yuan SF; Alper HS; Abate AR
    Nat Commun; 2017 Aug; 8(1):332. PubMed ID: 28835641
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhanced production of 5-hydroxytryptophan through the regulation of L-tryptophan biosynthetic pathway.
    Xu D; Fang M; Wang H; Huang L; Xu Q; Xu Z
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2481-2488. PubMed ID: 32006050
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Metabolic engineering for improving L-tryptophan production in Escherichia coli.
    Niu H; Li R; Liang Q; Qi Q; Li Q; Gu P
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):55-65. PubMed ID: 30426284
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fine-tuning the (2S)-naringenin synthetic pathway using an iterative high-throughput balancing strategy.
    Zhou S; Lyu Y; Li H; Koffas MAG; Zhou J
    Biotechnol Bioeng; 2019 Jun; 116(6):1392-1404. PubMed ID: 30684358
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An autoinducible trp-T7 expression system for production of proteins and biochemicals in Escherichia coli.
    Landberg J; Mundhada H; Nielsen AT
    Biotechnol Bioeng; 2020 May; 117(5):1513-1524. PubMed ID: 32022248
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Effects of gene pta disruption on L-tryptophan fermentation].
    Huang J; Shi J; Liu Q; Xu Q; Xie X; Wen T; Chen N
    Wei Sheng Wu Xue Bao; 2011 Apr; 51(4):480-7. PubMed ID: 21796982
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae.
    Leavitt JM; Wagner JM; Tu CC; Tong A; Liu Y; Alper HS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28296355
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.
    Zhang X; Zhang X; Xu G; Zhang X; Shi J; Xu Z
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5939-5951. PubMed ID: 29725721
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Finding the Needle in the Haystack-the Use of Microfluidic Droplet Technology to Identify Vitamin-Secreting Lactic Acid Bacteria.
    Chen J; Vestergaard M; Jensen TG; Shen J; Dufva M; Solem C; Jensen PR
    mBio; 2017 May; 8(3):. PubMed ID: 28559484
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli.
    Heo MJ; Jung HM; Um J; Lee SW; Oh MK
    ACS Synth Biol; 2017 Feb; 6(2):182-189. PubMed ID: 27700055
    [TBL] [Abstract][Full Text] [Related]  

  • 75. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 76. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 77. High-Yielding Terpene-Based Biofuel Production in
    Zhang Y; Song X; Lai Y; Mo Q; Yuan J
    ACS Synth Biol; 2021 Jun; 10(6):1545-1552. PubMed ID: 34101430
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Maltose Utilization as a Novel Selection Strategy for Continuous Evolution of Microbes with Enhanced Metabolite Production.
    Liu SD; Wu YN; Wang TM; Zhang C; Xing XH
    ACS Synth Biol; 2017 Dec; 6(12):2326-2338. PubMed ID: 28841296
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
    De Paepe B; Maertens J; Vanholme B; De Mey M
    ACS Synth Biol; 2018 May; 7(5):1303-1314. PubMed ID: 29688705
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Metabolic engineering advances and prospects for amino acid production.
    Wendisch VF
    Metab Eng; 2020 Mar; 58():17-34. PubMed ID: 30940506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.