These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 34081579)
1. How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning. Wang Y; Zhang L; Yao Y; Fu Y IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6240-6253. PubMed ID: 34081579 [TBL] [Abstract][Full Text] [Related]
2. Pseudo-Labeling Based Practical Semi-Supervised Meta-Training for Few-Shot Learning. Dong X; Ouyang T; Liao S; Du B; Shao L IEEE Trans Image Process; 2024; 33():5663-5675. PubMed ID: 39302804 [TBL] [Abstract][Full Text] [Related]
4. Negatives Make a Positive: An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning. Wei XS; Xu HY; Yang Z; Duan CL; Peng Y IEEE Trans Pattern Anal Mach Intell; 2024 Apr; 46(4):2091-2103. PubMed ID: 37971914 [TBL] [Abstract][Full Text] [Related]
5. Few-Shot Learning With a Strong Teacher. Ye HJ; Ming L; Zhan DC; Chao WL IEEE Trans Pattern Anal Mach Intell; 2024 Mar; 46(3):1425-1440. PubMed ID: 35298376 [TBL] [Abstract][Full Text] [Related]
6. Not All Instances Contribute Equally: Instance-Adaptive Class Representation Learning for Few-Shot Visual Recognition. Han M; Zhan Y; Luo Y; Du B; Hu H; Wen Y; Tao D IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5447-5460. PubMed ID: 36136920 [TBL] [Abstract][Full Text] [Related]
7. Generalized Meta-FDMixup: Cross-Domain Few-Shot Learning Guided by Labeled Target Data. Fu Y; Fu Y; Chen J; Jiang YG IEEE Trans Image Process; 2022; 31():7078-7090. PubMed ID: 36346859 [TBL] [Abstract][Full Text] [Related]
8. Unsupervised Few-Shot Feature Learning via Self-Supervised Training. Ji Z; Zou X; Huang T; Wu S Front Comput Neurosci; 2020; 14():83. PubMed ID: 33178000 [TBL] [Abstract][Full Text] [Related]
9. Sample-Centric Feature Generation for Semi-Supervised Few-Shot Learning. Zhang B; Ye H; Yu G; Wang B; Wu Y; Fan J; Chen T IEEE Trans Image Process; 2022; 31():2309-2320. PubMed ID: 35245196 [TBL] [Abstract][Full Text] [Related]
10. PatchMix Augmentation to Identify Causal Features in Few-Shot Learning. Xu C; Liu C; Sun X; Yang S; Wang Y; Wang C; Fu Y IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7639-7653. PubMed ID: 36409816 [TBL] [Abstract][Full Text] [Related]
11. Bridging the Gap Between Few-Shot and Many-Shot Learning via Distribution Calibration. Yang S; Wu S; Liu T; Xu M IEEE Trans Pattern Anal Mach Intell; 2022 Dec; 44(12):9830-9843. PubMed ID: 34860647 [TBL] [Abstract][Full Text] [Related]
12. Few-shot biomedical named entity recognition via knowledge-guided instance generation and prompt contrastive learning. Chen P; Wang J; Lin H; Zhao D; Yang Z Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37549065 [TBL] [Abstract][Full Text] [Related]
13. A comparison of few-shot and traditional named entity recognition models for medical text. Ge Y; Guo Y; Yang YC; Al-Garadi MA; Sarker A Proc (IEEE Int Conf Healthc Inform); 2022 Jun; 2022():84-89. PubMed ID: 37641590 [TBL] [Abstract][Full Text] [Related]
19. MetaLabelNet: Learning to Generate Soft-Labels From Noisy-Labels. Algan G; Ulusoy I IEEE Trans Image Process; 2022; 31():4352-4362. PubMed ID: 35731778 [TBL] [Abstract][Full Text] [Related]
20. Progressive Learning for Person Re-Identification with One Example. Wu Y; Lin Y; Dong X; Yan Y; Bian W; Yang Y IEEE Trans Image Process; 2019 Jan; ():. PubMed ID: 30629502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]