These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34081585)

  • 1. Global Mittag-Leffler Stability of the Delayed Fractional-Coupled Reaction-Diffusion System on Networks Without Strong Connectedness.
    Cao Y; Kao Y; Park JH; Bao H
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6473-6483. PubMed ID: 34081585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay.
    You X; Song Q; Zhao Z
    Neural Netw; 2020 Feb; 122():382-394. PubMed ID: 31785539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.
    Stamova I; Stamov G
    Neural Netw; 2017 Dec; 96():22-32. PubMed ID: 28950105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons.
    Yang X; Li C; Song Q; Chen J; Huang J
    Neural Netw; 2018 Sep; 105():88-103. PubMed ID: 29793129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition.
    Zhang X; Niu P; Ma Y; Wei Y; Li G
    Neural Netw; 2017 Oct; 94():67-75. PubMed ID: 28753446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses.
    Pratap A; Raja R; Sowmiya C; Bagdasar O; Cao J; Rajchakit G
    Neural Netw; 2018 Jul; 103():128-141. PubMed ID: 29677558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Mittag-Leffler synchronization of fractional-order neural networks with discontinuous activations.
    Ding Z; Shen Y; Wang L
    Neural Netw; 2016 Jan; 73():77-85. PubMed ID: 26562442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boundary Mittag-Leffler stabilization of fractional reaction-diffusion cellular neural networks.
    Liu XZ; Li ZT; Wu KN
    Neural Netw; 2020 Dec; 132():269-280. PubMed ID: 32949988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel methods to global Mittag-Leffler stability of delayed fractional-order quaternion-valued neural networks.
    Yan H; Qiao Y; Duan L; Miao J
    Neural Netw; 2021 Oct; 142():500-508. PubMed ID: 34280693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes.
    Ding X; Cao J; Zhao X; Alsaadi FE
    Proc Math Phys Eng Sci; 2017 Aug; 473(2204):20170322. PubMed ID: 28878565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with generalized piecewise constant argument.
    Wang J; Zhu S; Liu X; Wen S
    Neural Netw; 2023 May; 162():175-185. PubMed ID: 36907007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Mittag-Leffler synchronization of coupled delayed fractional reaction-diffusion Cohen-Grossberg neural networks via sliding mode control.
    Kao Y; Cao Y; Chen X
    Chaos; 2022 Nov; 32(11):113123. PubMed ID: 36456319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of reaction-diffusion fractional-order memristive neural networks.
    Li R; Cao J; Li N
    Neural Netw; 2023 Aug; 165():290-297. PubMed ID: 37307670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks.
    Chen J; Zeng Z; Jiang P
    Neural Netw; 2014 Mar; 51():1-8. PubMed ID: 24325932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mittag-Leffler stability and application of delayed fractional-order competitive neural networks.
    Zhang F; Huang T; Wu A; Zeng Z
    Neural Netw; 2024 Nov; 179():106501. PubMed ID: 38986190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Mittag-Leffler stability and existence of the solution for fractional-order complex-valued NNs with asynchronous time delays.
    Li H; Kao Y
    Chaos; 2021 Nov; 31(11):113110. PubMed ID: 34881590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Dissipativity and Quasi-Mittag-Leffler Synchronization of Fractional-Order Discontinuous Complex-Valued Neural Networks.
    Ding Z; Zhang H; Zeng Z; Yang L; Li S
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4139-4152. PubMed ID: 34739381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization analysis of coupled fractional-order neural networks with time-varying delays.
    Li B; Cheng X
    Math Biosci Eng; 2023 Jul; 20(8):14846-14865. PubMed ID: 37679162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple Mittag-Leffler stability of fractional-order competitive neural networks with Gaussian activation functions.
    Liu P; Nie X; Liang J; Cao J
    Neural Netw; 2018 Dec; 108():452-465. PubMed ID: 30312961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Mittag-Leffler Stability of Delayed Fractional-Order Cohen-Grossberg Neural Networks via Mixed Monotone Operator Pair.
    Zhang F; Zeng Z
    IEEE Trans Cybern; 2021 Dec; 51(12):6333-6344. PubMed ID: 31995512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.