BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 34081851)

  • 21. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening.
    Zhang X; Shen C; Zhang H; Kang Y; Hsieh CY; Hou T
    Acc Chem Res; 2024 May; 57(10):1500-1509. PubMed ID: 38577892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein-ligand affinity prediction.
    Wang Y; Wei Z; Xi L
    BMC Bioinformatics; 2022 Jun; 23(1):222. PubMed ID: 35676617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning from Docked Ligands: Ligand-Based Features Rescue Structure-Based Scoring Functions When Trained on Docked Poses.
    Boyles F; Deane CM; Morris GM
    J Chem Inf Model; 2022 Nov; 62(22):5329-5341. PubMed ID: 34469150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
    Liu Z; Su M; Han L; Liu J; Yang Q; Li Y; Wang R
    Acc Chem Res; 2017 Feb; 50(2):302-309. PubMed ID: 28182403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. End-to-end learning for compound activity prediction based on binding pocket information.
    Tanebe T; Ishida T
    BMC Bioinformatics; 2021 Oct; 22(Suppl 3):529. PubMed ID: 34715777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding Affinity Prediction by Pairwise Function Based on Neural Network.
    Zhu F; Zhang X; Allen JE; Jones D; Lightstone FC
    J Chem Inf Model; 2020 Jun; 60(6):2766-2772. PubMed ID: 32338892
    [TBL] [Abstract][Full Text] [Related]  

  • 28. zPoseScore model for accurate and robust protein-ligand docking pose scoring in CASP15.
    Shen T; Liu F; Wang Z; Sun J; Bu Y; Meng J; Chen W; Yao K; Mu Y; Li W; Zhao G; Wang S; Wei Y; Zheng L
    Proteins; 2023 Dec; 91(12):1837-1849. PubMed ID: 37606194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction.
    Rezaei MA; Li Y; Wu D; Li X; Li C
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):407-417. PubMed ID: 33360998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualizing convolutional neural network protein-ligand scoring.
    Hochuli J; Helbling A; Skaist T; Ragoza M; Koes DR
    J Mol Graph Model; 2018 Sep; 84():96-108. PubMed ID: 29940506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.
    Li Y; Han L; Liu Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1717-36. PubMed ID: 24708446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Boosting Protein-Ligand Binding Pose Prediction and Virtual Screening Based on Residue-Atom Distance Likelihood Potential and Graph Transformer.
    Shen C; Zhang X; Deng Y; Gao J; Wang D; Xu L; Pan P; Hou T; Kang Y
    J Med Chem; 2022 Aug; 65(15):10691-10706. PubMed ID: 35917397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring.
    Ye WL; Shen C; Xiong GL; Ding JJ; Lu AP; Hou TJ; Cao DS
    J Chem Inf Model; 2020 Sep; 60(9):4216-4230. PubMed ID: 32352294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Guiding Conventional Protein-Ligand Docking Software with Convolutional Neural Networks.
    Jiang H; Fan M; Wang J; Sarma A; Mohanty S; Dokholyan NV; Mahdavi M; Kandemir MT
    J Chem Inf Model; 2020 Oct; 60(10):4594-4602. PubMed ID: 33100014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term.
    Zheng L; Meng J; Jiang K; Lan H; Wang Z; Lin M; Li W; Guo H; Wei Y; Mu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35289359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting Protein-Ligand Docking Structure with Graph Neural Network.
    Jiang H; Wang J; Cong W; Huang Y; Ramezani M; Sarma A; Dokholyan NV; Mahdavi M; Kandemir MT
    J Chem Inf Model; 2022 Jun; 62(12):2923-2932. PubMed ID: 35699430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction.
    Ji B; He X; Zhai J; Zhang Y; Man VH; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33758923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CSAR Benchmark of Flexible MedusaDock in Affinity Prediction and Nativelike Binding Pose Selection.
    Nedumpully-Govindan P; Jemec DB; Ding F
    J Chem Inf Model; 2016 Jun; 56(6):1042-52. PubMed ID: 26252196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leveraging scaffold information to predict protein-ligand binding affinity with an empirical graph neural network.
    Xia C; Feng SH; Xia Y; Pan X; Shen HB
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36627113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.