BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 34082105)

  • 1. Viscoelastic characterization of human descending thoracic aortas under cyclic load.
    Franchini G; Breslavsky ID; Holzapfel GA; Amabili M
    Acta Biomater; 2021 Aug; 130():291-307. PubMed ID: 34082105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas.
    Amabili M; Balasubramanian P; Bozzo I; Breslavsky ID; Ferrari G
    J Mech Behav Biomed Mater; 2019 Nov; 99():27-46. PubMed ID: 31330442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructural and mechanical characterization of the layers of human descending thoracic aortas.
    Amabili M; Asgari M; Breslavsky ID; Franchini G; Giovanniello F; Holzapfel GA
    Acta Biomater; 2021 Oct; 134():401-421. PubMed ID: 34303867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical characterization of a chronic type a dissected human aorta.
    Amabili M; Arena GO; Balasubramanian P; Breslavsky ID; Cartier R; Ferrari G; Holzapfel GA; Kassab A; Mongrain R
    J Biomech; 2020 Sep; 110():109978. PubMed ID: 32827785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental characterization of residual deformations in human descending thoracic aortas.
    Amabili M; Franchini G; Garziera R
    J Mech Behav Biomed Mater; 2024 May; 153():106492. PubMed ID: 38479211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of smooth muscle activation in the static and dynamic mechanical characterization of human aortas.
    Franchini G; Breslavsky ID; Giovanniello F; Kassab A; Holzapfel GA; Amabili M
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and structural changes in human thoracic aortas with age.
    Jadidi M; Habibnezhad M; Anttila E; Maleckis K; Desyatova A; MacTaggart J; Kamenskiy A
    Acta Biomater; 2020 Feb; 103():172-188. PubMed ID: 31877371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelasticity of human descending thoracic aorta in a mock circulatory loop.
    Franchini G; Giovanniello F; Amabili M
    J Mech Behav Biomed Mater; 2022 Jun; 130():105205. PubMed ID: 35390678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic fractional viscoelastic constitutive models for human descending thoracic aortas.
    Amabili M; Balasubramanian P; Breslavsky I
    J Mech Behav Biomed Mater; 2019 Nov; 99():186-197. PubMed ID: 31362261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta.
    Sokolis DP
    J Biomech; 2019 Nov; 96():109335. PubMed ID: 31540821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
    Holzapfel GA; Ogden RW
    J R Soc Interface; 2010 May; 7(46):787-99. PubMed ID: 19828496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling.
    Holzapfel GA; Sommer G; Gasser CT; Regitnig P
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2048-58. PubMed ID: 16006541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.
    Peña JA; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2015 Oct; 50():55-69. PubMed ID: 26103440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-Specific Residual Deformations and Their Variation Along the Human Aorta.
    Sokolis DP; Gouskou N; Papadodima SA; Kourkoulis SK
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33876198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions.
    Valdez-Jasso D; Bia D; Zócalo Y; Armentano RL; Haider MA; Olufsen MS
    Ann Biomed Eng; 2011 May; 39(5):1438-56. PubMed ID: 21203846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the dynamic viscoelastic response of the ascending aorta imposed via pulsatile flow.
    Pejcic S; Najjari MR; Bisleri G; Rival DE
    J Mech Behav Biomed Mater; 2021 Jun; 118():104395. PubMed ID: 33752093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active and passive mechanical characterization of a human descending thoracic aorta with Klippel-Trenaunay syndrome.
    Amabili M; Franchini G; Asgari M; Giovanniello F; Ghayesh MH; Breslavsky ID
    J Mech Behav Biomed Mater; 2023 Dec; 148():106216. PubMed ID: 37924665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional biomechanical and failure properties of healthy human ascending aorta and root.
    Xuan Y; Wisneski AD; Wang Z; Lum M; Kumar S; Pallone J; Flores N; Inman J; Lai L; Lin J; Guccione JM; Tseng EE; Ge L
    J Mech Behav Biomed Mater; 2021 Nov; 123():104705. PubMed ID: 34454207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosaminoglycans modulate compressive stiffness and circumferential residual stress in the porcine thoracic aorta.
    Ghadie NM; Labrosse MR; St-Pierre JP
    Acta Biomater; 2023 Oct; 170():556-566. PubMed ID: 37683966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes.
    Sommer G; Sherifova S; Oberwalder PJ; Dapunt OE; Ursomanno PA; DeAnda A; Griffith BE; Holzapfel GA
    J Biomech; 2016 Aug; 49(12):2374-82. PubMed ID: 26970889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.