These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34082204)

  • 21. Assessing the environmental sustainability of electricity generation in Chile.
    Gaete-Morales C; Gallego-Schmid A; Stamford L; Azapagic A
    Sci Total Environ; 2018 Sep; 636():1155-1170. PubMed ID: 29913578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life-cycle nitrogen trifluoride emissions from photovoltaics.
    Fthenakis V; Clark DO; Moalem M; Chandler P; Ridgeway RG; Hulbert FE; Cooper DB; Maroulis PJ
    Environ Sci Technol; 2010 Nov; 44(22):8750-7. PubMed ID: 21067246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overview of global status and challenges for end-of-life crystalline silicon photovoltaic panels: A focus on environmental impacts.
    Seo B; Kim JY; Chung J
    Waste Manag; 2021 Jun; 128():45-54. PubMed ID: 33965672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimal integration of microalgae production with photovoltaic panels: environmental impacts and energy balance.
    Morales M; Hélias A; Bernard O
    Biotechnol Biofuels; 2019; 12():239. PubMed ID: 31624501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Life cycle cost analysis of solar energy via environmental externality monetization.
    Huang B; Wang Y; Huang Y; Xu X; Chen X; Duan L; Yu G; Li Z; Liu H; Kua HW; Xue B
    Sci Total Environ; 2023 Jan; 856(Pt 1):158910. PubMed ID: 36152852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes.
    Celik I; Mason BE; Phillips AB; Heben MJ; Apul D
    Environ Sci Technol; 2017 Apr; 51(8):4722-4732. PubMed ID: 28234471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Materials availability expands the opportunity for large-scale photovoltaics deployment.
    Wadia C; Alivisatos AP; Kammen DM
    Environ Sci Technol; 2009 Mar; 43(6):2072-7. PubMed ID: 19368216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities.
    Bilich A; Langham K; Geyer R; Goyal L; Hansen J; Krishnan A; Bergesen J; Sinha P
    Environ Sci Technol; 2017 Jan; 51(2):1043-1052. PubMed ID: 28009505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast determination of impurities in metallurgical grade silicon for photovoltaics by instrumental neutron activation analysis.
    Hampel J; Boldt FM; Gerstenberg H; Hampel G; Kratz JV; Reber S; Wiehl N
    Appl Radiat Isot; 2011 Oct; 69(10):1365-8. PubMed ID: 21652216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decentralized energy in flexible energy system: Life cycle environmental impacts in Belgium.
    Huber D; Costa D; Felice A; Valkering P; Coosemans T; Messagie M
    Sci Total Environ; 2023 Aug; 886():163882. PubMed ID: 37160185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solar cell cracks within a photovoltaic module: Characterization by AC impedance spectroscopy.
    Tanahashi T; Hsu ST
    PLoS One; 2022; 17(11):e0277768. PubMed ID: 36395286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An optimization method for energy structures based on life cycle assessment and its application to the power grid in China.
    Ding N; Pan J; Liu J; Yang J
    J Environ Manage; 2019 May; 238():18-24. PubMed ID: 30851557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of sand dust accumulation on photovoltaic performance in the Saharan environment: southern Algeria (Adrar).
    Mostefaoui M; Ziane A; Bouraiou A; Khelifi S
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):259-268. PubMed ID: 30392173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy and environmental performances of hybrid photovoltaic irrigation systems in Mediterranean intensive and super-intensive olive orchards.
    Todde G; Murgia L; Deligios PA; Hogan R; Carrelo I; Moreira M; Pazzona A; Ledda L; Narvarte L
    Sci Total Environ; 2019 Feb; 651(Pt 2):2514-2523. PubMed ID: 30336441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Costs of solar and wind power variability for reducing CO2 emissions.
    Lueken C; Cohen GE; Apt J
    Environ Sci Technol; 2012 Sep; 46(17):9761-7. PubMed ID: 22877159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.
    Mileva A; Nelson JH; Johnston J; Kammen DM
    Environ Sci Technol; 2013 Aug; 47(16):9053-60. PubMed ID: 23865424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An integrated technical, economic, and environmental framework for evaluating the rooftop photovoltaic potential of old residential buildings.
    Wang P; Yu P; Huang L; Zhang Y
    J Environ Manage; 2022 Sep; 317():115296. PubMed ID: 35644676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.
    Zimmermann BM; Dura H; Baumann MJ; Weil MR
    Integr Environ Assess Manag; 2015 Jul; 11(3):425-34. PubMed ID: 25891858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications.
    Kamath D; Shukla S; Arsenault R; Kim HC; Anctil A
    Waste Manag; 2020 Jul; 113():497-507. PubMed ID: 32513441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silicon solar cells: state of the art.
    Green MA
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110413. PubMed ID: 23816904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.