BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 34082280)

  • 1. Geometric deep learning on brain shape predicts sex and age.
    Besson P; Parrish T; Katsaggelos AK; Bandt SK
    Comput Med Imaging Graph; 2021 Jul; 91():101939. PubMed ID: 34082280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric Convolutional Neural Network for Analyzing Surface-Based Neuroimaging Data.
    Seong SB; Pae C; Park HJ
    Front Neuroinform; 2018; 12():42. PubMed ID: 30034333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning in rare disease. Detection of tubers in tuberous sclerosis complex.
    Sánchez Fernández I; Yang E; Calvachi P; Amengual-Gual M; Wu JY; Krueger D; Northrup H; Bebin ME; Sahin M; Yu KH; Peters JM;
    PLoS One; 2020; 15(4):e0232376. PubMed ID: 32348367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model.
    Saha S; Pagnozzi A; Bourgeat P; George JM; Bradford D; Colditz PB; Boyd RN; Rose SE; Fripp J; Pannek K
    Neuroimage; 2020 Jul; 215():116807. PubMed ID: 32278897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain MRI analysis using a deep learning based evolutionary approach.
    Shahamat H; Saniee Abadeh M
    Neural Netw; 2020 Jun; 126():218-234. PubMed ID: 32259762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker.
    Cole JH; Poudel RPK; Tsagkrasoulis D; Caan MWA; Steves C; Spector TD; Montana G
    Neuroimage; 2017 Dec; 163():115-124. PubMed ID: 28765056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional Neural Network-Based Deep Learning Model for Predicting Differential Suicidality in Depressive Patients Using Brain Generalized q-Sampling Imaging.
    Chen VC; Wong FT; Tsai YH; Cheok MT; Chang YE; McIntyre RS; Weng JC
    J Clin Psychiatry; 2021 Feb; 82(2):. PubMed ID: 33988925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpreting deep learning models for glioma survival classification using visualization and textual explanations.
    Osadebey M; Liu Q; Fuster-Garcia E; Emblem KE
    BMC Med Inform Decis Mak; 2023 Oct; 23(1):225. PubMed ID: 37853371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From a deep learning model back to the brain-Identifying regional predictors and their relation to aging.
    Levakov G; Rosenthal G; Shelef I; Raviv TR; Avidan G
    Hum Brain Mapp; 2020 Aug; 41(12):3235-3252. PubMed ID: 32320123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Deep Learning Based Automatic Diagnosis of Alzheimer's Disease with Joint MMSE Prediction Using Resting-State fMRI.
    Duc NT; Ryu S; Qureshi MNI; Choi M; Lee KH; Lee B
    Neuroinformatics; 2020 Jan; 18(1):71-86. PubMed ID: 31093956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting brain age with complex networks: From adolescence to adulthood.
    Bellantuono L; Marzano L; La Rocca M; Duncan D; Lombardi A; Maggipinto T; Monaco A; Tangaro S; Amoroso N; Bellotti R
    Neuroimage; 2021 Jan; 225():117458. PubMed ID: 33099008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomical context improves deep learning on the brain age estimation task.
    Bermudez C; Plassard AJ; Chaganti S; Huo Y; Aboud KS; Cutting LE; Resnick SM; Landman BA
    Magn Reson Imaging; 2019 Oct; 62():70-77. PubMed ID: 31247249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
    Wachinger C; Reuter M; Klein T
    Neuroimage; 2018 Apr; 170():434-445. PubMed ID: 28223187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D Convolutional Neural Networks.
    Ceschin R; Zahner A; Reynolds W; Gaesser J; Zuccoli G; Lo CW; Gopalakrishnan V; Panigrahy A
    Neuroimage; 2018 Sep; 178():183-197. PubMed ID: 29793060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.