BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 34082280)

  • 21. Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction.
    Khosla M; Jamison K; Kuceyeski A; Sabuncu MR
    Neuroimage; 2019 Oct; 199():651-662. PubMed ID: 31220576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning-based single-step quantitative susceptibility mapping reconstruction without brain extraction.
    Wei H; Cao S; Zhang Y; Guan X; Yan F; Yeom KW; Liu C
    Neuroimage; 2019 Nov; 202():116064. PubMed ID: 31377323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning patterns of the ageing brain in MRI using deep convolutional networks.
    Dinsdale NK; Bluemke E; Smith SM; Arya Z; Vidaurre D; Jenkinson M; Namburete AIL
    Neuroimage; 2021 Jan; 224():117401. PubMed ID: 32979523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
    Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X
    Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.
    Wu W; Li D; Du J; Gao X; Gu W; Zhao F; Feng X; Yan H
    Comput Math Methods Med; 2020; 2020():6789306. PubMed ID: 32733596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Novel Deep Learning Approach with a 3D Convolutional Ladder Network for Differential Diagnosis of Idiopathic Normal Pressure Hydrocephalus and Alzheimer's Disease.
    Irie R; Otsuka Y; Hagiwara A; Kamagata K; Kamiya K; Suzuki M; Wada A; Maekawa T; Fujita S; Kato S; Nakajima M; Miyajima M; Motoi Y; Abe O; Aoki S
    Magn Reson Med Sci; 2020 Dec; 19(4):351-358. PubMed ID: 31969525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.
    Zhao Y; Ge F; Liu T
    Med Image Anal; 2018 Jul; 47():111-126. PubMed ID: 29705574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index.
    Schaer M; Cuadra MB; Schmansky N; Fischl B; Thiran JP; Eliez S
    J Vis Exp; 2012 Jan; (59):e3417. PubMed ID: 22230945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Review on Multiscale-Deep-Learning Applications.
    Elizar E; Zulkifley MA; Muharar R; Zaman MHM; Mustaza SM
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.
    Wee CY; Liu C; Lee A; Poh JS; Ji H; Qiu A;
    Neuroimage Clin; 2019; 23():101929. PubMed ID: 31491832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning-Derived High-Level Neuroimaging Features Predict Clinical Outcomes for Large Vessel Occlusion.
    Nishi H; Oishi N; Ishii A; Ono I; Ogura T; Sunohara T; Chihara H; Fukumitsu R; Okawa M; Yamana N; Imamura H; Sadamasa N; Hatano T; Nakahara I; Sakai N; Miyamoto S
    Stroke; 2020 May; 51(5):1484-1492. PubMed ID: 32248769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
    Liu M; Li F; Yan H; Wang K; Ma Y; ; Shen L; Xu M
    Neuroimage; 2020 Mar; 208():116459. PubMed ID: 31837471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Convolutional neural networks to identify malformations of cortical development: A feasibility study.
    Sánchez Fernández I; Yang E; Amengual-Gual M; Barcia Aguilar C; Calvachi Prieto P; Peters JM
    Seizure; 2021 Oct; 91():81-90. PubMed ID: 34130195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications.
    Li G; Wang L; Shi F; Gilmore JH; Lin W; Shen D
    Med Image Anal; 2015 Oct; 25(1):22-36. PubMed ID: 25980388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of PET Attenuation Map for Whole-Body Time-of-Flight
    Hwang D; Kang SK; Kim KY; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2019 Aug; 60(8):1183-1189. PubMed ID: 30683763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction.
    Jiang H; Cao P; Xu M; Yang J; Zaiane O
    Comput Biol Med; 2020 Dec; 127():104096. PubMed ID: 33166800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data.
    Moya-Sáez E; Peña-Nogales Ó; Luis-García R; Alberola-López C
    Comput Methods Programs Biomed; 2021 Oct; 210():106371. PubMed ID: 34525411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MutagenPred-GCNNs: A Graph Convolutional Neural Network-Based Classification Model for Mutagenicity Prediction with Data-Driven Molecular Fingerprints.
    Li S; Zhang L; Feng H; Meng J; Xie D; Yi L; Arkin IT; Liu H
    Interdiscip Sci; 2021 Mar; 13(1):25-33. PubMed ID: 33506363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.