These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34082385)

  • 21. The role of visible and infrared spectroscopy combined with chemometrics to measure phenolic compounds in grape and wine samples.
    Cozzolino D
    Molecules; 2015 Jan; 20(1):726-37. PubMed ID: 25574817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geographical identification of Chianti red wine based on ICP-MS element composition.
    Bronzi B; Brilli C; Beone GM; Fontanella MC; Ballabio D; Todeschini R; Consonni V; Grisoni F; Parri F; Buscema M
    Food Chem; 2020 Jun; 315():126248. PubMed ID: 32018076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentiation of young red wines based on chemometrics of minor polyphenolic constituents.
    Kallithraka S; Mamalos A; Makris DP
    J Agric Food Chem; 2007 May; 55(9):3233-9. PubMed ID: 17407321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenolic characterisation of red wines from different grape varieties cultivated in Mendoza province (Argentina).
    Fanzone M; Zamora F; Jofré V; Assof M; Gómez-Cordovés C; Peña-Neira Á
    J Sci Food Agric; 2012 Feb; 92(3):704-18. PubMed ID: 21919008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of elevated CO2 on grapevine (Vitis vinifera L.): volatile composition, phenolic content, and in vitro antioxidant activity of red wine.
    Gonçalves B; Falco V; Moutinho-Pereira J; Bacelar E; Peixoto F; Correia C
    J Agric Food Chem; 2009 Jan; 57(1):265-73. PubMed ID: 19072054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brazilian red wines made from the hybrid grape cultivar Isabel: phenolic composition and antioxidant capacity.
    Nixdorf SL; Hermosín-Gutiérrez I
    Anal Chim Acta; 2010 Feb; 659(1-2):208-15. PubMed ID: 20103126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combination of two analytical techniques improves wine classification by Vineyard, Region, and vintage.
    Crook AA; Zamora-Olivares D; Bhinderwala F; Woods J; Winkler M; Rivera S; Shannon CE; Wagner HR; Zhuang DL; Lynch JE; Berryhill NR; Runnebaum RC; Anslyn EV; Powers R
    Food Chem; 2021 Aug; 354():129531. PubMed ID: 33756314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 1H NMR-based metabonomics for the classification of Greek wines according to variety, region, and vintage. Comparison with HPLC data.
    Anastasiadi M; Zira A; Magiatis P; Haroutounian SA; Skaltsounis AL; Mikros E
    J Agric Food Chem; 2009 Dec; 57(23):11067-74. PubMed ID: 19904930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool.
    Pérez-Navarro J; Izquierdo-Cañas PM; Mena-Morales A; Martínez-Gascueña J; Chacón-Vozmediano JL; García-Romero E; Hermosín-Gutiérrez I; Gómez-Alonso S
    Food Chem; 2019 Oct; 295():350-360. PubMed ID: 31174768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Vinification Techniques Combined with UV-C Irradiation on Phenolic Contents of Red Wines.
    Tahmaz H; Söylemezoğlu G
    J Food Sci; 2017 Jun; 82(6):1351-1356. PubMed ID: 28471493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.).
    de la Cerda-Carrasco A; López-Solís R; Nuñez-Kalasic H; Peña-Neira Á; Obreque-Slier E
    J Sci Food Agric; 2015 May; 95(7):1521-7. PubMed ID: 25082193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine.
    Rudnitskaya A; Rocha SM; Legin A; Pereira V; Marques JC
    Anal Chim Acta; 2010 Mar; 662(1):82-9. PubMed ID: 20152269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Front-face fluorescence excitation-emission matrices in combination with three-way chemometrics for the discrimination and prediction of phenolic response to vineyard agronomic practices.
    Cabrera-Bañegil M; Valdés-Sánchez E; Moreno D; Airado-Rodríguez D; Durán-Merás I
    Food Chem; 2019 Jan; 270():162-172. PubMed ID: 30174030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted and nontargeted wine analysis by (1)h NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: grape variety, geographical origin, year of vintage.
    Godelmann R; Fang F; Humpfer E; Schütz B; Bansbach M; Schäfer H; Spraul M
    J Agric Food Chem; 2013 Jun; 61(23):5610-9. PubMed ID: 23682581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenolic profile and free radical-scavenging activity of Cabernet Sauvignon wines of different geographical origins from the Balkan region.
    Radovanović BC; Radovanović AN; Souquet JM
    J Sci Food Agric; 2010 Nov; 90(14):2455-61. PubMed ID: 20648551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics.
    Bajoub A; Medina-Rodríguez S; Gómez-Romero M; Ajal el A; Bagur-González MG; Fernández-Gutiérrez A; Carrasco-Pancorbo A
    Food Chem; 2017 Jan; 215():245-55. PubMed ID: 27542473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted and untargeted high resolution mass approach for a putative profiling of glycosylated simple phenols in hybrid grapes.
    Barnaba C; Dellacassa E; Nicolini G; Giacomelli M; Roman Villegas T; Nardin T; Larcher R
    Food Res Int; 2017 Aug; 98():20-33. PubMed ID: 28610729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-fermentation of red grapes and white pomace: A natural and economical process to modulate hybrid wine composition.
    Nicolle P; Marcotte C; Angers P; Pedneault K
    Food Chem; 2018 Mar; 242():481-490. PubMed ID: 29037718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in phenolic compounds of Aragon red wines during alcoholic fermentation.
    Puértolas E; Alvarez I; Raso J
    Food Sci Technol Int; 2011 Apr; 17(2):77-86. PubMed ID: 21421675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of fortified, sfursat, and passito wines produced from fresh and dehydrated grapes of aromatic black cv. Moscato nero (Vitis vinifera L.).
    Ossola C; Giacosa S; Torchio F; Río Segade S; Caudana A; Cagnasso E; Gerbi V; Rolle L
    Food Res Int; 2017 Aug; 98():59-67. PubMed ID: 28610733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.