These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34082959)

  • 1. Tuning bio-aerogel properties for controlling theophylline delivery. Part 1: Pectin aerogels.
    Groult S; Buwalda S; Budtova T
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112148. PubMed ID: 34082959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels.
    Groult S; Buwalda S; Budtova T
    Biomater Adv; 2022 Apr; 135():212732. PubMed ID: 35929208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning bio-aerogel properties. Part 3: Exploring silica-pectin composite aerogels for drug delivery.
    Groult S; Buwalda S; Budtova T
    Biomater Adv; 2024 Oct; 163():213954. PubMed ID: 38996543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers.
    Veronovski A; Tkalec G; Knez Ž; Novak Z
    Carbohydr Polym; 2014 Nov; 113():272-8. PubMed ID: 25256485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels.
    Groult S; Budtova T
    Carbohydr Polym; 2018 Sep; 196():73-81. PubMed ID: 29891326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysaccharide-based aerogel microspheres for oral drug delivery.
    García-González CA; Jin M; Gerth J; Alvarez-Lorenzo C; Smirnova I
    Carbohydr Polym; 2015 Mar; 117():797-806. PubMed ID: 25498702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pectin-based aerogel particles for drug delivery: Effect of pectin composition on aerogel structure and release properties.
    Méndez DA; Schroeter B; Martínez-Abad A; Fabra MJ; Gurikov P; López-Rubio A
    Carbohydr Polym; 2023 Apr; 306():120604. PubMed ID: 36746590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerogels in drug delivery: From design to application.
    García-González CA; Sosnik A; Kalmár J; De Marco I; Erkey C; Concheiro A; Alvarez-Lorenzo C
    J Control Release; 2021 Apr; 332():40-63. PubMed ID: 33600880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins.
    Chen K; Zhang H
    Int J Biol Macromol; 2019 Sep; 136():936-943. PubMed ID: 31229541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.
    Gonçalves VS; Gurikov P; Poejo J; Matias AA; Heinrich S; Duarte CM; Smirnova I
    Eur J Pharm Biopharm; 2016 Oct; 107():160-70. PubMed ID: 27393563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and Characterization of Chitosan-Coated Pectin Aerogels:
    Pantić M; Horvat G; Knez Ž; Novak Z
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32155739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying.
    Gaudio PD; Auriemma G; Mencherini T; Porta GD; Reverchon E; Aquino RP
    J Pharm Sci; 2013 Jan; 102(1):185-94. PubMed ID: 23150457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing.
    De Cicco F; Russo P; Reverchon E; García-González CA; Aquino RP; Del Gaudio P
    Carbohydr Polym; 2016 Aug; 147():482-489. PubMed ID: 27178955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels.
    Smirnova I; Suttiruengwong S; Seiler M; Arlt W
    Pharm Dev Technol; 2004 Nov; 9(4):443-52. PubMed ID: 15581080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral sustained delivery of theophylline and cimetidine from in situ gelling pectin formulations in rabbits.
    Kubo W; Itoh K; Miyazaki S; Attwood D
    Drug Dev Ind Pharm; 2005 Sep; 31(8):819-25. PubMed ID: 16221617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swelling and erosion of pectin matrix tablets and their impact on drug release behavior.
    Sriamornsak P; Thirawong N; Weerapol Y; Nunthanid J; Sungthongjeen S
    Eur J Pharm Biopharm; 2007 Aug; 67(1):211-9. PubMed ID: 17267193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs.
    Veres P; López-Periago AM; Lázár I; Saurina J; Domingo C
    Int J Pharm; 2015 Dec; 496(2):360-70. PubMed ID: 26484894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulated drug system based on the gels obtained from callus cultures modified pectins.
    Günter EA; Popeyko OV; Istomina EI
    J Biotechnol; 2019 Jan; 289():7-14. PubMed ID: 30423368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosslinker-Free Hyaluronic Acid Aerogels.
    Aguilera-Bulla D; Legay L; Buwalda SJ; Budtova T
    Biomacromolecules; 2022 Jul; 23(7):2838-2845. PubMed ID: 35674777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.