These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34082959)

  • 21. Pectin/anhydrous dibasic calcium phosphate matrix tablets for in vitro controlled release of water-soluble drug.
    Mamani PL; Ruiz-Caro R; Veiga MD
    Int J Pharm; 2015 Oct; 494(1):235-43. PubMed ID: 26276258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mesoporous starch aerogels production as drug delivery matrices: synthesis optimization, ibuprofen loading, and release property.
    Mohammadi A; Moghaddas J
    Turk J Chem; 2020; 44(3):614-633. PubMed ID: 33488181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies of pectin HM/Eudragit RL/Eudragit NE film-coating formulations intended for colonic drug delivery.
    Semdé R; Amighi K; Devleeschouwer MJ; Moës AJ
    Int J Pharm; 2000 Mar; 197(1-2):181-92. PubMed ID: 10704805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles.
    Obaidat RM; Tashtoush BM; Bayan MF; Al Bustami RT; Alnaief M
    AAPS PharmSciTech; 2015 Dec; 16(6):1235-44. PubMed ID: 25761387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of nanoporous aerogels from wheat starch.
    Ubeyitogullari A; Ciftci ON
    Carbohydr Polym; 2016 Aug; 147():125-132. PubMed ID: 27178916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pectin-based nanocomposite aerogels for potential insulated food packaging application.
    Nešić A; Gordić M; Davidović S; Radovanović Ž; Nedeljković J; Smirnova I; Gurikov P
    Carbohydr Polym; 2018 Sep; 195():128-135. PubMed ID: 29804960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel.
    Rudaz C; Courson R; Bonnet L; Calas-Etienne S; Sallée H; Budtova T
    Biomacromolecules; 2014 Jun; 15(6):2188-95. PubMed ID: 24773153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of enteric-coated pectin-based matrix tablets for colonic delivery of theophylline.
    Mura P; Maestrelli F; Cirri M; González Rodríguez ML; Rabasco Alvarez AM
    J Drug Target; 2003 Jul; 11(6):365-71. PubMed ID: 14668057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels - Implications in drug delivery.
    Kéri M; Forgács A; Papp V; Bányai I; Veres P; Len A; Dudás Z; Fábián I; Kalmár J
    Acta Biomater; 2020 Mar; 105():131-145. PubMed ID: 31953196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of Nanofibrous Structure in Biopolymer Aerogel during Supercritical CO
    Takeshita S; Sadeghpour A; Malfait WJ; Konishi A; Otake K; Yoda S
    Biomacromolecules; 2019 May; 20(5):2051-2057. PubMed ID: 30908038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis, drying process and medical application of polysaccharide-based aerogels.
    El-Naggar ME; Othman SI; Allam AA; Morsy OM
    Int J Biol Macromol; 2020 Feb; 145():1115-1128. PubMed ID: 31678101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyaluronic Acid Aerogels Made Via Freeze-Thaw-Induced Gelation.
    Legay L; Budtova T; Buwalda S
    Biomacromolecules; 2023 Oct; 24(10):4502-4509. PubMed ID: 37071924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and release characteristics of mesalazine loaded calcium pectin-silica gel beads based on callus cultures pectins for colon-targeted drug delivery.
    Günter EA; Markov PA; Melekhin AK; Belozerov VS; Martinson EA; Litvinets SG; Popov SV
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2225-2233. PubMed ID: 30012483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ gelling pectin formulations for oral drug delivery at high gastric pH.
    Itoh K; Hirayama T; Takahashi A; Kubo W; Miyazaki S; Dairaku M; Togashi M; Mikami R; Attwood D
    Int J Pharm; 2007 Apr; 335(1-2):90-96. PubMed ID: 17141988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impregnation of passion fruit bagasse extract in alginate aerogel microparticles.
    Viganó J; Meirelles AAD; Náthia-Neves G; Baseggio AM; Cunha RL; Maróstica Junior MR; Meireles MAA; Gurikov P; Smirnova I; Martínez J
    Int J Biol Macromol; 2020 Jul; 155():1060-1068. PubMed ID: 31712155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier.
    Obaidat RM; Alnaief M; Mashaqbeh H
    AAPS PharmSciTech; 2018 Jul; 19(5):2226-2236. PubMed ID: 29736886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supercritical impregnation of starch aerogels with quercetin: Fungistatic effect and release modelling with a compartmental model.
    Mottola S; Iannone G; Giordano M; González-Garcinuño Á; Jiménez A; Tabernero A; Martín Del Valle E; De Marco I
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127406. PubMed ID: 37832612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles' Micromeritics.
    Rodríguez-Dorado R; López-Iglesias C; García-González CA; Auriemma G; Aquino RP; Del Gaudio P
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30884869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid Polylactic-Acid-Pectin Aerogels: Synthesis, Structural Properties, and Drug Release.
    Horvat G; Žvab K; Knez Ž; Novak Z
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Creating and exploring carboxymethyl cellulose aerogels as drug delivery devices.
    Yu S; Budtova T
    Carbohydr Polym; 2024 May; 332():121925. PubMed ID: 38431419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.