These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 34082989)

  • 1. Additively manufactured BaTiO
    Mancuso E; Shah L; Jindal S; Serenelli C; Tsikriteas ZM; Khanbareh H; Tirella A
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112192. PubMed ID: 34082989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication, morphological, mechanical and biological performance of 3D printed poly(ϵ-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications.
    Barbosa TV; Dernowsek JA; Tobar RJR; Casali BC; Fortulan CA; Ferreira EB; Selistre-de-Araújo HS; Branciforti MC
    Biomed Mater; 2022 Aug; 17(5):. PubMed ID: 35948004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering.
    Ansari MAA; Makwana P; Dhimmar B; Vasita R; Jain PK; Nanda HS
    J Mater Chem B; 2024 Jul; 12(28):6886-6904. PubMed ID: 38912967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior.
    Rezania N; Asadi-Eydivand M; Abolfathi N; Bonakdar S; Mehrjoo M; Solati-Hashjin M
    J Mater Sci Mater Med; 2022 Mar; 33(3):31. PubMed ID: 35267105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical translation of polycaprolactone-based tissue engineering scaffolds, fabricated via additive manufacturing: A review of their craniofacial applications.
    Kirmanidou Y; Chatzinikolaidou M; Michalakis K; Tsouknidas A
    Biomater Adv; 2024 Sep; 162():213902. PubMed ID: 38823255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts.
    Zhang X; Chang W; Lee P; Wang Y; Yang M; Li J; Kumbar SG; Yu X
    PLoS One; 2014; 9(1):e85871. PubMed ID: 24475056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications.
    Vyas C; Zhang J; Øvrebø Ø; Huang B; Roberts I; Setty M; Allardyce B; Haugen H; Rajkhowa R; Bartolo P
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111433. PubMed ID: 33255027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L; Güçeri S; Wen X; Gandhi M; Sun W
    Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds.
    Seyedsalehi A; Daneshmandi L; Barajaa M; Riordan J; Laurencin CT
    Sci Rep; 2020 Dec; 10(1):22210. PubMed ID: 33335152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration.
    El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM
    Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-Printed Piezoelectric Porous Bioactive Scaffolds and Clinical Ultrasonic Stimulation Can Help in Enhanced Bone Regeneration.
    Sikder P; Nagaraju P; Naganaboyina HPS
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36421081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation.
    Gonçalves EM; Oliveira FJ; Silva RF; Neto MA; Fernandes MH; Amaral M; Vallet-Regí M; Vila M
    J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1210-9. PubMed ID: 26089195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D porous PCL-PEG-PCL / strontium, magnesium and boron multi-doped hydroxyapatite composite scaffolds for bone tissue engineering.
    Yedekçi B; Tezcaner A; Yılmaz B; Demir T; Evis Z
    J Mech Behav Biomed Mater; 2022 Jan; 125():104941. PubMed ID: 34749203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printed Demineralized Bone Matrix-Based Conductive Scaffolds Combined with Electrical Stimulation for Bone Tissue Engineering Applications.
    Dixon DT; Landree EN; Gomillion CT
    ACS Appl Bio Mater; 2024 Jul; 7(7):4366-4378. PubMed ID: 38905196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.