These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 34082990)
1. Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness. Li J; Zhang Y; Enhe J; Yao B; Wang Y; Zhu D; Li Z; Song W; Duan X; Yuan X; Fu X; Huang S Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112193. PubMed ID: 34082990 [TBL] [Abstract][Full Text] [Related]
2. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles. Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional bioprinting of mesenchymal stem cells using an osteoinductive bioink containing alginate and BMP-2-loaded PLGA nanoparticles for bone tissue engineering. Choe G; Lee M; Oh S; Seok JM; Kim J; Im S; Park SA; Lee JY Biomater Adv; 2022 May; 136():212789. PubMed ID: 35929321 [TBL] [Abstract][Full Text] [Related]
4. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
5. 3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Olate-Moya F; Rubí-Sans G; Engel E; Mateos-Timoneda MÁ; Palza H Biomacromolecules; 2024 Jun; 25(6):3312-3324. PubMed ID: 38728671 [TBL] [Abstract][Full Text] [Related]
6. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034 [TBL] [Abstract][Full Text] [Related]
7. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
8. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550 [TBL] [Abstract][Full Text] [Related]
9. Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues. Freeman FE; Kelly DJ Sci Rep; 2017 Dec; 7(1):17042. PubMed ID: 29213126 [TBL] [Abstract][Full Text] [Related]
11. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Choe G; Oh S; Seok JM; Park SA; Lee JY Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460 [TBL] [Abstract][Full Text] [Related]
12. Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior. Li Z; Huang S; Liu Y; Yao B; Hu T; Shi H; Xie J; Fu X Sci Rep; 2018 May; 8(1):8020. PubMed ID: 29789674 [TBL] [Abstract][Full Text] [Related]
14. Extrusion bioprinting of cellular aggregates improves mesenchymal stem cell proliferation and differentiation. Liang L; Li Z; Yao B; Enhe J; Song W; Zhang C; Zhu P; Huang S Biomater Adv; 2023 Jun; 149():213369. PubMed ID: 37058781 [TBL] [Abstract][Full Text] [Related]
15. Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks. Gao Q; Kim BS; Gao G Mar Drugs; 2021 Dec; 19(12):. PubMed ID: 34940707 [TBL] [Abstract][Full Text] [Related]
16. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related]
17. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179 [TBL] [Abstract][Full Text] [Related]
18. Properties of an alginate-gelatin-based bioink and its potential impact on cell migration, proliferation, and differentiation. Cheng L; Yao B; Hu T; Cui X; Shu X; Tang S; Wang R; Wang Y; Liu Y; Song W; Fu X; Li H; Huang S Int J Biol Macromol; 2019 Aug; 135():1107-1113. PubMed ID: 31173833 [TBL] [Abstract][Full Text] [Related]
19. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of a Novel Thiol-Norbornene-Functionalized Gelatin Hydrogel for Bioprinting of Mesenchymal Stem Cells. Burchak V; Koch F; Siebler L; Haase S; Horner VK; Kempter X; Stark GB; Schepers U; Grimm A; Zimmermann S; Koltay P; Strassburg S; Finkenzeller G; Simunovic F; Lampert F Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887286 [No Abstract] [Full Text] [Related] [Next] [New Search]