BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 34083717)

  • 1. Structural basis of complex formation between mitochondrial anion channel VDAC1 and Hexokinase-II.
    Haloi N; Wen PC; Cheng Q; Yang M; Natarajan G; Camara AKS; Kwok WM; Tajkhorshid E
    Commun Biol; 2021 Jun; 4(1):667. PubMed ID: 34083717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knockout of VDAC1 in H9c2 Cells Promotes Oxidative Stress-Induced Cell Apoptosis through Decreased Mitochondrial Hexokinase II Binding and Enhanced Glycolytic Stress.
    Yang M; Sun J; Stowe DF; Tajkhorshid E; Kwok WM; Camara AKS
    Cell Physiol Biochem; 2020 Sep; 54(5):853-874. PubMed ID: 32901466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico construction of HK2-VDAC1 complex and investigating the HK2 binding-induced molecular gating mechanism of VDAC1.
    Zhang D; Yip YM; Li L
    Mitochondrion; 2016 Sep; 30():222-8. PubMed ID: 27544294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular model of hexokinase binding to the outer mitochondrial membrane porin (VDAC1): Implication for the design of new cancer therapies.
    Rosano C
    Mitochondrion; 2011 May; 11(3):513-9. PubMed ID: 21315184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial voltage-dependent anion channel 1 in tumor cells.
    Shoshan-Barmatz V; Ben-Hail D; Admoni L; Krelin Y; Tripathi SS
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt B):2547-75. PubMed ID: 25448878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding.
    Abu-Hamad S; Zaid H; Israelson A; Nahon E; Shoshan-Barmatz V
    J Biol Chem; 2008 May; 283(19):13482-90. PubMed ID: 18308720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steroidogenic activity of StAR requires contact with mitochondrial VDAC1 and phosphate carrier protein.
    Bose M; Whittal RM; Miller WL; Bose HS
    J Biol Chem; 2008 Apr; 283(14):8837-45. PubMed ID: 18250166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a mitochondrial-binding site on the N-terminal end of hexokinase II.
    Bryan N; Raisch KP
    Biosci Rep; 2015 Apr; 35(3):. PubMed ID: 26182367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Voltage-Dependent Anion Channel 1-Hexokinase-II Complex-Targeted Strategy for Melanoma Inhibition Using Designed Multiblock Peptide Amphiphiles.
    Zhang F; Angelova A; Garamus VM; Angelov B; Tu S; Kong L; Zhang X; Li N; Zou A
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35281-35293. PubMed ID: 34309373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between expression of voltage-dependent anion channel (VDAC) isoforms and type of hexokinase binding sites on brain mitochondria.
    Poleti MD; Tesch AC; Crepaldi CR; Souza GH; Eberlin MN; de Cerqueira César M
    J Mol Neurosci; 2010 May; 41(1):48-54. PubMed ID: 19688190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peroxynitrite nitrates adenine nucleotide translocase and voltage-dependent anion channel 1 and alters their interactions and association with hexokinase II in mitochondria.
    Yang M; Xu Y; Heisner JS; Sun J; Stowe DF; Kwok WM; Camara AKS
    Mitochondrion; 2019 May; 46():380-392. PubMed ID: 30391711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity.
    Arzoine L; Zilberberg N; Ben-Romano R; Shoshan-Barmatz V
    J Biol Chem; 2009 Feb; 284(6):3946-55. PubMed ID: 19049977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key regions of VDAC1 functioning in apoptosis induction and regulation by hexokinase.
    Shoshan-Barmatz V; Zakar M; Rosenthal K; Abu-Hamad S
    Biochim Biophys Acta; 2009 May; 1787(5):421-30. PubMed ID: 19094960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP produced by oxidative phosphorylation is channeled toward hexokinase bound to mitochondrial porin (VDAC) in beetroots (Beta vulgaris).
    Alcántar-Aguirre FC; Chagolla A; Tiessen A; Délano JP; González de la Vara LE
    Planta; 2013 Jun; 237(6):1571-83. PubMed ID: 23503782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional dynamics in the voltage-dependent anion channel.
    Villinger S; Briones R; Giller K; Zachariae U; Lange A; de Groot BL; Griesinger C; Becker S; Zweckstetter M
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22546-51. PubMed ID: 21148773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy.
    Smilansky A; Dangoor L; Nakdimon I; Ben-Hail D; Mizrachi D; Shoshan-Barmatz V
    J Biol Chem; 2015 Dec; 290(52):30670-83. PubMed ID: 26542804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexokinase I N-terminal based peptide prevents the VDAC1-SOD1 G93A interaction and re-establishes ALS cell viability.
    Magrì A; Belfiore R; Reina S; Tomasello MF; Di Rosa MC; Guarino F; Leggio L; De Pinto V; Messina A
    Sci Rep; 2016 Oct; 6():34802. PubMed ID: 27721436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An N-terminal nucleotide-binding site in VDAC1: involvement in regulating mitochondrial function.
    Yehezkel G; Abu-Hamad S; Shoshan-Barmatz V
    J Cell Physiol; 2007 Aug; 212(2):551-61. PubMed ID: 17503466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial VDAC, the Na
    Shoshan-Barmatz V; De S
    Adv Exp Med Biol; 2017; 981():323-347. PubMed ID: 29594867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP transport through VDAC and the VDAC-tubulin complex probed by equilibrium and nonequilibrium MD simulations.
    Noskov SY; Rostovtseva TK; Bezrukov SM
    Biochemistry; 2013 Dec; 52(51):9246-56. PubMed ID: 24245503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.