These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34084559)

  • 1. Toward Development of a Vocal Fold Contact Pressure Probe: Bench-Top Validation of a Dual-Sensor Probe Using Excised Human Larynx Models.
    Mehta DD; Kobler JB; Zeitels SM; Zañartu M; Erath BD; Motie-Shirazi M; Peterson SD; Petrillo RH; Hillman RE
    Appl Sci (Basel); 2019 Oct; 9(20):. PubMed ID: 34084559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurement and modeling of intraglottal, subglottal, and vocal fold collision pressures during phonation in an individual with a hemilaryngectomy.
    Mehta DD; Kobler JB; Zeitels SM; Zañartu M; Ibarra EJ; Alzamendi GA; Manriquez R; Erath BD; Peterson SD; Petrillo RH; Hillman RE
    Appl Sci (Basel); 2021 Aug; 11(16):. PubMed ID: 36210866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medial Surface Dynamics as a Function of Subglottal Pressure in a Canine Larynx Model.
    Oren L; Khosla S; Gutmark E
    J Voice; 2021 Jan; 35(1):69-76. PubMed ID: 31387765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges.
    Khosla S; Oren L; Ying J; Gutmark E
    Laryngoscope; 2014 Apr; 124 Suppl 2():S1-13. PubMed ID: 24510612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Development of a Vocal Fold Contact Pressure Probe: Sensor Characterization and Validation Using Synthetic Vocal Fold Models.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Kobler JB; Hillman RE; Erath BD
    Appl Sci (Basel); 2019 Aug; 9(15):. PubMed ID: 32377408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model.
    Ibarra EJ; Parra JA; Alzamendi GA; Cortés JP; Espinoza VM; Mehta DD; Hillman RE; Zañartu M
    Front Physiol; 2021; 12():732244. PubMed ID: 34539451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow fields and acoustics in a unilateral scarred vocal fold model.
    Murugappan S; Khosla S; Casper K; Oren L; Gutmark E
    Ann Otol Rhinol Laryngol; 2009 Jan; 118(1):44-50. PubMed ID: 19244963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraglottal velocity and pressure measurements in a hemilarynx model.
    Oren L; Gutmark E; Khosla S
    J Acoust Soc Am; 2015 Feb; 137(2):935-43. PubMed ID: 25698025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of vocal fold intraglottal pressure and impact stress.
    Jiang JJ; Titze IR
    J Voice; 1994 Jun; 8(2):132-44. PubMed ID: 8061769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subglottal pressure oscillations in anechoic and resonant conditions and their influence on excised larynx phonations.
    Lehoux S; Hampala V; Švec JG
    Sci Rep; 2021 Jan; 11(1):28. PubMed ID: 33420107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of False Vocal Folds on Intraglottal Velocity Fields.
    Oren L; Khosla S; Farbos de Luzan C; Gutmark E
    J Voice; 2021 Sep; 35(5):695-702. PubMed ID: 32147314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vocal tract adjustments to minimize vocal fold contact pressure during phonation.
    Zhang Z
    J Acoust Soc Am; 2021 Sep; 150(3):1609. PubMed ID: 34598628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved subglottal pressure estimation from neck-surface vibration in healthy speakers producing non-modal phonation.
    Lin JZ; Espinoza VM; Marks KL; Zañartu M; Mehta DD
    IEEE J Sel Top Signal Process; 2020 Feb; 14(2):449-460. PubMed ID: 34079612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vocal Fold Collision Speed in vivo: The Effect of Loudness.
    DeJonckere PH; Lebacq J
    J Voice; 2022 Sep; 36(5):608-621. PubMed ID: 33004227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Utility of the Ratio of Sound Pressure Level to Subglottal Pressure in Patients Surgically Treated for Phonotraumatic Vocal Fold Lesions.
    Toles LE; Seidman AY; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2022 Aug; 65(8):2778-2788. PubMed ID: 35914023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational study of the effect of intraglottal vortex-induced negative pressure on vocal fold vibration.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2014 Nov; 136(5):EL369-75. PubMed ID: 25373995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic glottal pressures in an excised hemilarynx model.
    Alipour F; Scherer RC
    J Voice; 2000 Dec; 14(4):443-54. PubMed ID: 11130103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.