These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 34084916)
1. Satellite imagery and machine learning for identification of aridity risk in central Java Indonesia. Prasetyo SYJ; Hartomo KD; Paseleng MC PeerJ Comput Sci; 2021; 7():e415. PubMed ID: 34084916 [TBL] [Abstract][Full Text] [Related]
2. Machine learning models for predicting vegetation conditions in Mahanadi River basin. Raj DK; Gopikrishnan T Environ Monit Assess; 2023 Nov; 195(12):1401. PubMed ID: 37917222 [TBL] [Abstract][Full Text] [Related]
3. Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms. Kafy AA; Bakshi A; Saha M; Faisal AA; Almulhim AI; Rahaman ZA; Mohammad P Sci Total Environ; 2023 Apr; 867():161394. PubMed ID: 36634773 [TBL] [Abstract][Full Text] [Related]
4. [Grain yield estimation of wheat-maize rotation cultivated land based on Sentinel-2 multi-spectral image: A case study in Caoxian County, Shandong, China]. Chen Y; Zhao GX; Chang CY; Wang ZR; Li YS; Zhao HS; Zhang SW; Pan JR Ying Yong Sheng Tai Xue Bao; 2023 Dec; 34(12):3347-3356. PubMed ID: 38511374 [TBL] [Abstract][Full Text] [Related]
5. Irrigated Crop Types Mapping in Tashkent Province of Uzbekistan with Remote Sensing-Based Classification Methods. Erdanaev E; Kappas M; Wyss D Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957240 [TBL] [Abstract][Full Text] [Related]
6. Spatio-temporal classification of land use and land cover and its changes in Kerala using remote sensing and machine learning approach. Vijay A; Varija K Environ Monit Assess; 2024 Apr; 196(5):459. PubMed ID: 38634958 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed. Anmala J; Turuganti V Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328 [TBL] [Abstract][Full Text] [Related]
8. The normalized difference vegetation index (NDVI) of the Zat valley, Marrakech: comparison and dynamics. Essaadia A; Abdellah A; Ahmed A; Abdelouahed F; Kamal E Heliyon; 2022 Dec; 8(12):e12204. PubMed ID: 36536903 [TBL] [Abstract][Full Text] [Related]
9. Dust detection and susceptibility mapping by aiding satellite imagery time series and integration of ensemble machine learning with evolutionary algorithms. Razavi-Termeh SV; Sadeghi-Niaraki A; Naqvi RA; Choi SM Environ Pollut; 2023 Oct; 335():122241. PubMed ID: 37482338 [TBL] [Abstract][Full Text] [Related]
10. Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm. Tan C; Zhou X; Zhang P; Wang Z; Wang D; Guo W; Yun F PLoS One; 2020; 15(3):e0228500. PubMed ID: 32160185 [TBL] [Abstract][Full Text] [Related]
11. Application of genetic algorithm in optimization parallel ensemble-based machine learning algorithms to flood susceptibility mapping using radar satellite imagery. Razavi-Termeh SV; Sadeghi-Niaraki A; Seo M; Choi SM Sci Total Environ; 2023 May; 873():162285. PubMed ID: 36801341 [TBL] [Abstract][Full Text] [Related]
12. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related]
13. Leaf water potential of coffee estimated by landsat-8 images. Maciel DA; Silva VA; Alves HMR; Volpato MML; Barbosa JPRA; Souza VCO; Santos MO; Silveira HRO; Dantas MF; Freitas AF; Carvalho GR; Oliveira Dos Santos J PLoS One; 2020; 15(3):e0230013. PubMed ID: 32187201 [TBL] [Abstract][Full Text] [Related]
14. Can tree species diversity be assessed with Landsat data in a temperate forest? Arekhi M; Yılmaz OY; Yılmaz H; Akyüz YF Environ Monit Assess; 2017 Oct; 189(11):586. PubMed ID: 29080961 [TBL] [Abstract][Full Text] [Related]
15. Quantitative assessment of Land use/land cover changes in a developing region using machine learning algorithms: A case study in the Kurdistan Region, Iraq. Rash A; Mustafa Y; Hamad R Heliyon; 2023 Nov; 9(11):e21253. PubMed ID: 37954393 [TBL] [Abstract][Full Text] [Related]
16. Monitoring Spatiotemporal Vegetation Response to Drought Using Remote Sensing Data. Mirzaee S; Mirzakhani Nafchi A Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850731 [TBL] [Abstract][Full Text] [Related]
17. The fusion of vegetation indices increases the accuracy of cotton leaf area prediction. Fan X; Gao P; Zhang M; Cang H; Zhang L; Zhang Z; Wang J; Lv X; Zhang Q; Ma L Front Plant Sci; 2024; 15():1357193. PubMed ID: 39104844 [TBL] [Abstract][Full Text] [Related]
18. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Zhou T; Geng Y; Ji C; Xu X; Wang H; Pan J; Bumberger J; Haase D; Lausch A Sci Total Environ; 2021 Feb; 755(Pt 2):142661. PubMed ID: 33059134 [TBL] [Abstract][Full Text] [Related]
19. Prediction of Chlorophyll Content in Multi-Temporal Winter Wheat Based on Multispectral and Machine Learning. Wang W; Cheng Y; Ren Y; Zhang Z; Geng H Front Plant Sci; 2022; 13():896408. PubMed ID: 35712585 [TBL] [Abstract][Full Text] [Related]
20. Drought evolution indicated by meteorological and remote-sensing drought indices under different land cover types in China. Javed T; Yao N; Chen X; Suon S; Li Y Environ Sci Pollut Res Int; 2020 Feb; 27(4):4258-4274. PubMed ID: 31828700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]