These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34085029)

  • 1. Isolated Effects of Surface Ligand Density on the Catalytic Activity and Selectivity of Palladium Nanoparticles.
    Vargas KM; San KA; Shon YS
    ACS Appl Nano Mater; 2019 Nov; 2(11):7188-7196. PubMed ID: 34085029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling surface ligand density and core size of alkanethiolate-capped Pd nanoparticles and their effects on catalysis.
    Gavia DJ; Shon YS
    Langmuir; 2012 Oct; 28(40):14502-8. PubMed ID: 22924990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-soluble Pd nanoparticles synthesized from ω-carboxyl-S-alkanethiosulfate ligand precursors as unimolecular micelle catalysts.
    Gavia DJ; Maung MS; Shon YS
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12432-40. PubMed ID: 24246150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis.
    San KA; Shon YS
    Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29783714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic interpretation of selective catalytic hydrogenation and isomerization of alkenes and dienes by ligand deactivated Pd nanoparticles.
    Zhu JS; Shon YS
    Nanoscale; 2015 Nov; 7(42):17786-90. PubMed ID: 26455381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkanethiolate-capped palladium nanoparticles for selective catalytic hydrogenation of dienes and trienes.
    Chen TA; Shon YS
    Catal Sci Technol; 2017 Oct; 7(20):4823-4829. PubMed ID: 29713450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pd Nanoparticle-Catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-Dependent Regioselectivity.
    Sadeghmoghaddam E; Gu H; Shon YS
    ACS Catal; 2012 Sep; 2(9):1838-1845. PubMed ID: 27642537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Partially Poisoned Alkanethiolate-Capped Platinum Nanoparticles for Hydrogenation of Activated Terminal Alkynes.
    San KA; Chen V; Shon YS
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9823-9832. PubMed ID: 28252941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkanethiolate-Capped Palladium Nanoparticles for Regio- and Stereoselective Hydrogenation of Allenes.
    Chen TA; Shon YS
    Catalysts; 2018 Oct; 8(10):. PubMed ID: 30733870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(tetrafluoroethylene)-Stabilized Metal Nanoparticles: Preparation and Evaluation of Catalytic Activity for Suzuki, Heck, and Arene Hydrogenation in Water.
    Ohtaka A; Kawase M; Aihara S; Miyamoto Y; Terada A; Nakamura K; Hamasaka G; Uozumi Y; Shinagawa T; Shimomura O; Nomura R
    ACS Omega; 2018 Aug; 3(8):10066-10073. PubMed ID: 31459135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical synthesis of palladium nanoparticles: The influence of chemical fixatives used in electron microscopy on nanoparticle formation and catalytic performance.
    Tan L; Ray Jones T; Poitras J; Xie J; Liu X; Southam G
    J Hazard Mater; 2020 Nov; 398():122945. PubMed ID: 32516730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Noncovalent Interactions on the Catalytic Activity of Unsupported Colloidal Palladium Nanoparticles Stabilized with Thiolate Ligands.
    Maung MS; Shon YS
    J Phys Chem C Nanomater Interfaces; 2017 Sep; 121(38):20882-20891. PubMed ID: 29326755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximity Effects of Methyl Group on Ligand Steric Interactions and Colloidal Stability of Palladium Nanoparticles.
    Tieu P; Nguyen V; Shon YS
    Front Chem; 2020; 8():599. PubMed ID: 32754577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Insights into the Formation of Dodecanethiolate-Stabilized Magnetic Iridium Nanoparticles: Thiosulfate vs Thiol Ligands.
    Gavia DJ; Do Y; Gu J; Shon YS
    J Phys Chem C Nanomater Interfaces; 2014 Jul; 118(26):14548-14554. PubMed ID: 25018790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties.
    Anand K; Tiloke C; Phulukdaree A; Ranjan B; Chuturgoon A; Singh S; Gengan RM
    J Photochem Photobiol B; 2016 Dec; 165():87-95. PubMed ID: 27776261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesised palladium nanoparticles using Eucommia ulmoides bark aqueous extract and their catalytic activity.
    Duan L; Li M; Liu H
    IET Nanobiotechnol; 2015 Dec; 9(6):349-54. PubMed ID: 26647810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sapium sebiferum leaf extract mediated synthesis of palladium nanoparticles and in vitro investigation of their bacterial and photocatalytic activities.
    Tahir K; Nazir S; Li B; Ahmad A; Nasir T; Khan AU; Shah SA; Khan ZU; Yasin G; Hameed MU
    J Photochem Photobiol B; 2016 Nov; 164():164-173. PubMed ID: 27689741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioengineered
    Malik MA; Alshehri AA; Abomuti MA; Danish EY; Patel R
    Toxics; 2021 May; 9(5):. PubMed ID: 34064502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofabrication of polyphenols coated Nano palladium and its in-vitro cytotoxicity against human leukemia cell lines (K562).
    Li Y; Wang H; Zhang R; Zhang G; Yang Y; Liu Z
    J Photochem Photobiol B; 2017 Oct; 175():173-177. PubMed ID: 28888889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palladium nanoparticles captured in microporous polymers: a tailor-made catalyst for heterogeneous carbon cross-coupling reactions.
    Ogasawara S; Kato S
    J Am Chem Soc; 2010 Apr; 132(13):4608-13. PubMed ID: 20225817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.