These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34085086)

  • 1. Electronic properties of N-rich graphene nano-chevrons.
    da Costa Azevêdo AS; Saraiva-Souza A; Meunier V; Girão EC
    Phys Chem Chem Phys; 2021 Jun; 23(23):13204-13215. PubMed ID: 34085086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyridinic N-doped graphene - a density-functional study.
    Yutomo EB; Noor FA; Winata T
    RSC Adv; 2021 May; 11(30):18371-18380. PubMed ID: 35480933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic interaction between nitrogen atoms in doped graphene.
    Tison Y; Lagoute J; Repain V; Chacon C; Girard Y; Rousset S; Joucken F; Sharma D; Henrard L; Amara H; Ghedjatti A; Ducastelle F
    ACS Nano; 2015 Jan; 9(1):670-8. PubMed ID: 25558891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene.
    Błoński P; Tuček J; Sofer Z; Mazánek V; Petr M; Pumera M; Otyepka M; Zbořil R
    J Am Chem Soc; 2017 Mar; 139(8):3171-3180. PubMed ID: 28110530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal stability study of nitrogen functionalities in a graphene network.
    Kumar A; Ganguly A; Papakonstantinou P
    J Phys Condens Matter; 2012 Jun; 24(23):235503. PubMed ID: 22576101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Investigation of the Interfaces and Mechanisms of Induced Spin Polarization of 1D Narrow Zigzag Graphene- and h-BN Nanoribbons on a SrO-Terminated LSMO(001) Surface.
    Avramov P; Kuzubov AA; Kuklin AV; Lee H; Kovaleva EA; Sakai S; Entani S; Naramoto H; Sorokin PB
    J Phys Chem A; 2017 Jan; 121(3):680-689. PubMed ID: 28075136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Chemical Dynamics of Pyridinic-Nitrogen Defects in Graphene.
    Lin YC; Teng PY; Yeh CH; Koshino M; Chiu PW; Suenaga K
    Nano Lett; 2015 Nov; 15(11):7408-13. PubMed ID: 26488153
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Zhang C; Cao Y; Dai X; Ding XY; Chen L; Li BS; Wang DQ
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32344620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons.
    Javan M; Jorjani R; Soltani AR
    J Mol Model; 2020 Mar; 26(4):64. PubMed ID: 32125548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-Resolved Electronic and Transport Properties of Graphyne-Based Nanojunctions with Different N-Substituting Positions.
    Li X; Li Y; Zhang X; Long M; Zhou G
    Nanoscale Res Lett; 2019 Aug; 14(1):299. PubMed ID: 31463616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-dependent stability and electronic structure of single vacancy point defects in hexagonal graphene nano-flakes.
    Shi H; Barnard AS; Snook IK
    Phys Chem Chem Phys; 2013 Apr; 15(14):4897-905. PubMed ID: 23420228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure of graphene nanoribbons doped with nitrogen atoms: a theoretical insight.
    Torres AE; Fomine S
    Phys Chem Chem Phys; 2015 Apr; 17(16):10608-14. PubMed ID: 25804382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of nitrogen-doped graphene nanoflakes: Stability and spectroscopy depending on dopant types and flake sizes.
    Lin CK
    J Comput Chem; 2018 Jul; 39(20):1387-1397. PubMed ID: 29504131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple thermal spin transport performances of graphene nanoribbon heterojuction co-doped with Nitrogen and Boron.
    Huang H; Gao G; Fu H; Zheng A; Zou F; Ding G; Yao K
    Sci Rep; 2017 Jun; 7(1):3955. PubMed ID: 28638083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and transport properties of boron-doped graphene nanoribbons.
    Martins TB; Miwa RH; da Silva AJ; Fazzio A
    Phys Rev Lett; 2007 May; 98(19):196803. PubMed ID: 17677646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling.
    Ahmadi MT; Razmdideh A; Rahimian Koloor SS; Petrů M
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32106402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons.
    Senturk AE; Oktem AS; Konukman AES
    J Mol Model; 2018 Jan; 24(2):43. PubMed ID: 29352756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach.
    Lee JH; Kwon SH; Kwon S; Cho M; Kim KH; Han TH; Lee SG
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface effects in hybrid hBN-graphene nanoribbons.
    Leon C; Costa M; Chico L; Latgé A
    Sci Rep; 2019 Mar; 9(1):3508. PubMed ID: 30837518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.