BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34085224)

  • 1. Assaying Cell Cycle Progression via Flow Cytometry in CRISPR/Cas9-Treated Cells.
    Geisinger JM; Stearns T
    Methods Mol Biol; 2021; 2329():195-204. PubMed ID: 34085224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation protocol for CRISPR/Cas9-mediated CD19 knockout GM24385 cells by flow cytometry and Sanger sequencing.
    Inwood SL; Tian L; Parratt K; Maragh S; Wang L
    Biotechniques; 2022 Jun; 72(6):279-286. PubMed ID: 35703314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometry-based quantification of genome editing efficiency in human cell lines using the L1CAM gene.
    Hasan MN; Hyodo T; Biswas M; Rahman ML; Mihara Y; Karnan S; Ota A; Tsuzuki S; Hosokawa Y; Konishi H
    PLoS One; 2023; 18(11):e0294146. PubMed ID: 37943774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient CRISPR/Cas9-mediated gene editing in Guangdong small-ear spotted pig cells using an optimized electrotransfection method.
    Wei YY; Zhan QM; Zhu XX; Yan AF; Feng J; Liu L; Li JH; Tang DS
    Biotechnol Lett; 2020 Nov; 42(11):2091-2109. PubMed ID: 32494996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speed genome editing by transient CRISPR/Cas9 targeting and large DNA fragment deletion.
    Luo J; Lu L; Gu Y; Huang R; Gui L; Li S; Qi X; Zheng W; Chao T; Zheng Q; Liang Y; Zhang L
    J Biotechnol; 2018 Sep; 281():11-20. PubMed ID: 29886029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis.
    Kato S; Fukazawa T; Kubo T
    Biochem Biophys Res Commun; 2021 Mar; 543():50-55. PubMed ID: 33515912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FACS-Assisted CRISPR-Cas9 Genome Editing Facilitates Parkinson's Disease Modeling.
    Arias-Fuenzalida J; Jarazo J; Qing X; Walter J; Gomez-Giro G; Nickels SL; Zaehres H; Schöler HR; Schwamborn JC
    Stem Cell Reports; 2017 Nov; 9(5):1423-1431. PubMed ID: 28988985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells.
    Geisinger JM; Stearns T
    Nucleic Acids Res; 2020 Sep; 48(16):9067-9081. PubMed ID: 32687165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9.
    Everman JL; Rios C; Seibold MA
    Methods Mol Biol; 2018; 1706():267-292. PubMed ID: 29423804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering.
    Wada N; Ueta R; Osakabe Y; Osakabe K
    BMC Plant Biol; 2020 May; 20(1):234. PubMed ID: 32450802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise and efficient scarless genome editing in stem cells using CORRECT.
    Kwart D; Paquet D; Teo S; Tessier-Lavigne M
    Nat Protoc; 2017 Feb; 12(2):329-354. PubMed ID: 28102837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line.
    Arbabi Zaboli K; Rahimi H; Thekkiniath J; Taromchi AH; Kaboli S
    Folia Histochem Cytobiol; 2022; 60(1):13-23. PubMed ID: 35157300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved CRISPR/Cas9 gene editing by fluorescence activated cell sorting of green fluorescence protein tagged protoplasts.
    Petersen BL; Möller SR; Mravec J; Jørgensen B; Christensen M; Liu Y; Wandall HH; Bennett EP; Yang Z
    BMC Biotechnol; 2019 Jun; 19(1):36. PubMed ID: 31208390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells.
    Geng BC; Choi KH; Wang SZ; Chen P; Pan XD; Dong NG; Ko JK; Zhu H
    Acta Pharmacol Sin; 2020 Nov; 41(11):1427-1432. PubMed ID: 32555510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats.
    Zhang J; Liu J; Yang W; Cui M; Dai B; Dong Y; Yang J; Zhang X; Liu D; Liang H; Cang M
    Theriogenology; 2019 Jul; 132():1-11. PubMed ID: 30981084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recruitment of DNA Repair MRN Complex by Intrinsically Disordered Protein Domain Fused to Cas9 Improves Efficiency of CRISPR-Mediated Genome Editing.
    Reuven N; Adler J; Broennimann K; Myers N; Shaul Y
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31597252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.