These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 34085697)

  • 1. Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity.
    Andersson S; Romero A; Rodrigues JI; Hua S; Hao X; Jacobson T; Karl V; Becker N; Ashouri A; Rauch S; Nyström T; Liu B; Tamás MJ
    J Cell Sci; 2021 Jun; 134(11):. PubMed ID: 34085697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast chaperones and ubiquitin ligases contribute to proteostasis during arsenite stress by preventing or clearing protein aggregates.
    Rodrigues JI; Lorentzon E; Hua S; Boucher A; Tamás MJ
    FEBS Lett; 2023 Jul; 597(13):1733-1747. PubMed ID: 37191881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic determinants of mitochondrial response to arsenic in yeast Saccharomyces cerevisiae.
    Vujcic M; Shroff M; Singh KK
    Cancer Res; 2007 Oct; 67(20):9740-9. PubMed ID: 17942904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast.
    Jacobson T; Navarrete C; Sharma SK; Sideri TC; Ibstedt S; Priya S; Grant CM; Christen P; Goloubinoff P; Tamás MJ
    J Cell Sci; 2012 Nov; 125(Pt 21):5073-83. PubMed ID: 22946053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae.
    Thorsen M; Perrone GG; Kristiansson E; Traini M; Ye T; Dawes IW; Nerman O; Tamás MJ
    BMC Genomics; 2009 Mar; 10():105. PubMed ID: 19284616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential contributions of the proteasome, autophagy, and chaperones to the clearance of arsenite-induced protein aggregates in yeast.
    Hua S; Kłosowska A; Rodrigues JI; Petelski G; Esquembre LA; Lorentzon E; Olsen LF; Liberek K; Tamás MJ
    J Biol Chem; 2022 Dec; 298(12):102680. PubMed ID: 36356902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel arsenic resistance genes in yeast.
    Isik E; Balkan Ç; Karl V; Karakaya HÇ; Hua S; Rauch S; Tamás MJ; Koc A
    Microbiologyopen; 2022 Jun; 11(3):e1284. PubMed ID: 35765185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity.
    Zhou X; Arita A; Ellen TP; Liu X; Bai J; Rooney JP; Kurtz AD; Klein CB; Dai W; Begley TJ; Costa M
    Genomics; 2009 Nov; 94(5):294-307. PubMed ID: 19631266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Etp1 confers arsenite resistance by affecting ACR3 expression.
    Romero AM; Maciaszczyk-Dziubinska E; Mombeinipour M; Lorentzon E; Aspholm E; Wysocki R; Tamás MJ
    FEMS Yeast Res; 2022 Apr; 22(1):. PubMed ID: 35323907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast.
    Thorsen M; Di Y; Tängemo C; Morillas M; Ahmadpour D; Van der Does C; Wagner A; Johansson E; Boman J; Posas F; Wysocki R; Tamás MJ
    Mol Biol Cell; 2006 Oct; 17(10):4400-10. PubMed ID: 16885417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of FAP7, MIG3, TMA19, or YLR392c confers resistance to arsenite on Saccharomyces cerevisiae.
    Takahashi T; Yano T; Zhu J; Hwang GW; Naganuma A
    J Toxicol Sci; 2010 Dec; 35(6):945-6. PubMed ID: 21139346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the selectivity of arsenic trioxide for acute promyelocytic leukemia cells by characterizing Saccharomyces cerevisiae deletion strains that are sensitive or resistant to the metalloid.
    Dilda PJ; Perrone GG; Philp A; Lock RB; Dawes IW; Hogg PJ
    Int J Biochem Cell Biol; 2008; 40(5):1016-29. PubMed ID: 18160327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.
    Thorsen M; Lagniel G; Kristiansson E; Junot C; Nerman O; Labarre J; Tamás MJ
    Physiol Genomics; 2007 Jun; 30(1):35-43. PubMed ID: 17327492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional RNA interference (RNAi) screen identifies system A neutral amino acid transporter 2 (SNAT2) as a mediator of arsenic-induced endoplasmic reticulum stress.
    Oh RS; Pan WC; Yalcin A; Zhang H; Guilarte TR; Hotamisligil GS; Christiani DC; Lu Q
    J Biol Chem; 2012 Feb; 287(8):6025-34. PubMed ID: 22215663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Histone H3 and H4 Amino Acid Residues Important for the Regulation of Arsenite Stress Signaling in
    Thakre PK; Golla U; Biswas A; Tomar RS
    Chem Res Toxicol; 2020 Mar; 33(3):817-833. PubMed ID: 32032493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species and Ca2+ are involved in sodium arsenite-induced cell killing in yeast cells.
    Wu L; Yi H; Zhang H
    FEMS Microbiol Lett; 2013 Jun; 343(1):57-63. PubMed ID: 23510033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular insight into arsenic toxicity via the genome-wide deletion mutant screening of Saccharomyces cerevisiae.
    Johnson AJ; Veljanoski F; O'Doherty PJ; Zaman MS; Petersingham G; Bailey TD; Münch G; Kersaitis C; Wu MJ
    Metallomics; 2016 Feb; 8(2):228-35. PubMed ID: 26688044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the response of Kluyveromyces lactis to arsenite and peroxide stress and the role of the transcription factor KlYap8.
    Veide Vilg J; Kumar NV; Maciaszczyk-Dziubinska E; Sloma E; Onesime D; Aubert J; Migocka M; Wysocki R; Tamás MJ
    Biochim Biophys Acta; 2014 Nov; 1839(11):1295-306. PubMed ID: 25234620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel.
    Maciaszczyk-Dziubinska E; Migdal I; Migocka M; Bocer T; Wysocki R
    FEBS Lett; 2010 Feb; 584(4):726-32. PubMed ID: 20026328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p.
    Wysocki R; Fortier PK; Maciaszczyk E; Thorsen M; Leduc A; Odhagen A; Owsianik G; Ulaszewski S; Ramotar D; Tamás MJ
    Mol Biol Cell; 2004 May; 15(5):2049-60. PubMed ID: 14978214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.