These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3408583)

  • 1. Changes in the cooperativity of diaphragm-associated acetylcholinesterase induced by monovalent (Na+, Li+) cations.
    Tsakiris S; Kouniniotou-Krontiri P
    Biochem Cell Biol; 1988 May; 66(5):382-8. PubMed ID: 3408583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation and stabilization of diaphragm-associated acetylcholinesterase by monovalent (Na+, Li+) cations.
    Tsakiris S; Kouniniotou-Krontiri P
    Biochem Int; 1988 Jun; 16(6):1041-51. PubMed ID: 3178856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of sulfhydryl groups in time-dependent changes of diaphragm acetylcholinesterase activity by monovalent (Na+, Li+) cations.
    Kouniniotou-Krontiri P; Tsakiris S; Hadjigeorgiou GM
    Biochem Mol Biol Int; 1994 Jun; 33(3):485-96. PubMed ID: 7951067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time dependence of Li+ action on acetylcholinesterase activity in correlation with spontaneous quantal release of acetylcholine in rat diaphragm.
    Kouniniotou-Krontiri P; Tsakiris S
    Jpn J Physiol; 1989; 39(3):429-40. PubMed ID: 2552204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-phenylalanine effect on rat diaphragm acetylcholinesterase and Na+,K(+)-ATPase.
    Tsakiris S; Kouniniotou-Krontiri P; Schulpis KH
    Z Naturforsch C J Biosci; 1998; 53(11-12):1055-60. PubMed ID: 9933971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alanine reverses the inhibitory effect of phenylalanine on acetylcholinesterase activity.
    Tsakiris S; Schulpis KH
    Z Naturforsch C J Biosci; 2002; 57(5-6):506-11. PubMed ID: 12132693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformers of acetylcholinesterase: a mechanism of allosteric control.
    Taylor JL; Mayer RT; Himel CM
    Mol Pharmacol; 1994 Jan; 45(1):74-83. PubMed ID: 8302283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of acetylcholinesterase during adaptation to chronic, subacute paraoxon application in rat.
    Milatovic D; Dettbarn WD
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):20-8. PubMed ID: 8560475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Mg(2+)-ATP on acetylcholinesterase of Electrophorus electricus (L.).
    Nery da Matta A; Silva CB; Hassón-Voloch A
    Z Naturforsch C J Biosci; 1996; 51(1-2):65-9. PubMed ID: 8721214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atypical effect of some spin trapping agents: reversible inhibition of acetylcholinesterase.
    Milatovic D; Radic Z; Zivin M; Dettbarn WD
    Free Radic Biol Med; 2000 Feb; 28(4):597-603. PubMed ID: 10719241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of in vitro homocystinuria on the suckling rat hippocampal acetylcholinesterase.
    Schulpis KH; Kalimeris K; Bakogiannis C; Tsakiris T; Tsakiris S
    Metab Brain Dis; 2006 Mar; 21(1):21-8. PubMed ID: 16773467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Li+ and Ba2+ on the electrocyte membrane-bound (Na+ + K+)-ATPase.
    Somló C; Hassón-Voloch A
    Int J Biochem; 1987; 19(1):17-21. PubMed ID: 3032703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (Na+, K+)-activated adenosinetriphosphatase of axonal membranes, cooperativity and control. Steady-state analysis.
    Gache C; Rossi B; Lazdunski M
    Eur J Biochem; 1976 May; 65(1):293-306. PubMed ID: 132350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical studies of the actions of ethanol on acetylcholinesterase activity: ethanol-enzyme-solvent interaction.
    Shin S; Wu P; Chen CH
    Int J Biochem; 1991; 23(2):169-74. PubMed ID: 1999262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of aspartame on acetylcholinesterase activity in hippocampal homogenates of suckling rats.
    Simintzi I; Schulpis KH; Angelogianni P; Liapi C; Tsakiris S
    Pharmacol Res; 2007 Aug; 56(2):155-9. PubMed ID: 17580119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of monovalent cations on cardiac Na+, K+-ATPase activity and on contractile force.
    Ku D; Akera T; Tobin T; Brody TM
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 290(2-3):113-31. PubMed ID: 127126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of the rate of ouabain binding to (Na+ + K+)ATPase by lithium ions.
    Krishnan N; Albers RW
    J Neurochem; 1980 Sep; 35(3):753-5. PubMed ID: 6256497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation by lithium ions of the inside sodium sites in (Na+ + K+)-ATPase.
    Beaugé L
    Biochim Biophys Acta; 1978 Dec; 527(2):472-84. PubMed ID: 215214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of permeant monovalent cations on end-plate channels.
    Gage PW; Van Helden D
    J Physiol; 1979 Mar; 288():509-28. PubMed ID: 112241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of the interaction of the sodium channel with permeant monovalent cations.
    Jacques Y; Romey G; Fosset M; Lazdunski M
    Eur J Biochem; 1980 May; 106(1):71-83. PubMed ID: 6281000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.