BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34085831)

  • 1. Metal-Organic Framework-Confined Single-Site Base-Metal Catalyst for Chemoselective Hydrodeoxygenation of Carbonyls and Alcohols.
    Antil N; Kumar A; Akhtar N; Newar R; Begum W; Manna K
    Inorg Chem; 2021 Jun; 60(12):9029-9039. PubMed ID: 34085831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoselective and Tandem Reduction of Arenes Using a Metal-Organic Framework-Supported Single-Site Cobalt Catalyst.
    Antil N; Kumar A; Akhtar N; Begum W; Chauhan M; Newar R; Rawat MS; Manna K
    Inorg Chem; 2022 Jan; 61(2):1031-1040. PubMed ID: 34967211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.
    Manna K; Ji P; Lin Z; Greene FX; Urban A; Thacker NC; Lin W
    Nat Commun; 2016 Aug; 7():12610. PubMed ID: 27574182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Site Cobalt Catalysts at New Zr8(μ2-O)8(μ2-OH)4 Metal-Organic Framework Nodes for Highly Active Hydrogenation of Alkenes, Imines, Carbonyls, and Heterocycles.
    Ji P; Manna K; Lin Z; Urban A; Greene FX; Lan G; Lin W
    J Am Chem Soc; 2016 Sep; 138(37):12234-42. PubMed ID: 27598720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Site Cobalt-Catalyst Ligated with Pyridylimine-Functionalized Metal-Organic Frameworks for Arene and Benzylic Borylation.
    Newar R; Begum W; Antil N; Shukla S; Kumar A; Akhtar N; Balendra ; Manna K
    Inorg Chem; 2020 Aug; 59(15):10473-10481. PubMed ID: 32649190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General and selective deoxygenation by hydrogen using a reusable earth-abundant metal catalyst.
    Schwob T; Kunnas P; de Jonge N; Papp C; Steinrück HP; Kempe R
    Sci Adv; 2019 Nov; 5(11):eaav3680. PubMed ID: 31763445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane.
    Li Z; Peters AW; Platero-Prats AE; Liu J; Kung CW; Noh H; DeStefano MR; Schweitzer NM; Chapman KW; Hupp JT; Farha OK
    J Am Chem Soc; 2017 Oct; 139(42):15251-15258. PubMed ID: 28976757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-organic layers stabilize earth-abundant metal-terpyridine diradical complexes for catalytic C-H activation.
    Lin Z; Thacker NC; Sawano T; Drake T; Ji P; Lan G; Cao L; Liu S; Wang C; Lin W
    Chem Sci; 2018 Jan; 9(1):143-151. PubMed ID: 29629082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.
    Zhang G; Vasudevan KV; Scott BL; Hanson SK
    J Am Chem Soc; 2013 Jun; 135(23):8668-81. PubMed ID: 23713752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic scope and mechanistic studies of Ru(OH)x/Al2O3-catalyzed heterogeneous hydrogen-transfer reactions.
    Yamaguchi K; Koike T; Kotani M; Matsushita M; Shinachi S; Mizuno N
    Chemistry; 2005 Nov; 11(22):6574-82. PubMed ID: 16092142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A supported pyridylimine-cobalt catalyst for
    Akhtar N; Chauhan M; Gupta P; Antil N; Manna K
    Dalton Trans; 2023 Oct; 52(42):15384-15393. PubMed ID: 37043211
    [No Abstract]   [Full Text] [Related]  

  • 12. Leveraging Cu/CuFe
    Koley P; Chandra Shit S; Joseph B; Pollastri S; Sabri YM; Mayes ELH; Nakka L; Tardio J; Mondal J
    ACS Appl Mater Interfaces; 2020 May; 12(19):21682-21700. PubMed ID: 32314915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Reduction of Nitro Compounds by Organosilanes Catalyzed by a Zirconium Metal-Organic Framework Supported Salicylaldimine-Cobalt(II) Complex.
    Akhtar N; Chauhan M; Rana B; Thadhani C; Kalita R; Begum W; Ghosh B; Manna K
    Chempluschem; 2024 Apr; 89(4):e202300520. PubMed ID: 37930953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly effective and chemoselective hydrodeoxygenation of aromatic alcohols.
    Xu C; Wu H; Zhang Z; Zheng B; Zhai J; Zhang K; Wu W; Mei X; He M; Han B
    Chem Sci; 2022 Feb; 13(6):1629-1635. PubMed ID: 35282624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-Tolerant DUT-Series Metal-Organic Frameworks: A Theoretical-Experimental Study for the Chemical Fixation of CO
    Kurisingal JF; Rachuri Y; Palakkal AS; Pillai RS; Gu Y; Choe Y; Park DW
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41458-41471. PubMed ID: 31613085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reusable unsupported rhenium nanocrystalline catalyst for acceptorless dehydrogenation of alcohols through γ-C-H activation.
    Yi J; Miller JT; Zemlyanov DY; Zhang R; Dietrich PJ; Ribeiro FH; Suslov S; Abu-Omar MM
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):833-6. PubMed ID: 24282107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fischer-Tropsch synthesis: study of the promotion of Pt on the reduction property of Co/Al2O3 catalysts by in situ EXAFS of Co K and Pt LIII edges and XPS.
    Jacobs G; Chaney JA; Patterson PM; Das TK; Maillot JC; Davis BH
    J Synchrotron Radiat; 2004 Sep; 11(Pt 5):414-22. PubMed ID: 15310958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Flexibility and Porosity of the Metal-Organic Framework DUT-49 through Postsynthetic Metal Exchange.
    Garai B; Bon V; Krause S; Schwotzer F; Gerlach M; Senkovska I; Kaskel S
    Chem Mater; 2020 Jan; 32(2):889-896. PubMed ID: 35601600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New chiral and flexible metal-organic framework with a bifunctional spiro linker and Zn4O-nodes.
    Gedrich K; Senkovska I; Baburin IA; Mueller U; Trapp O; Kaskel S
    Inorg Chem; 2010 May; 49(10):4440-6. PubMed ID: 20394370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.