BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34085859)

  • 1. A Complex of LaoA and LaoB Acts as a Tat-Dependent Dehydrogenase for Long-Chain Alcohols in Pseudomonas aeruginosa.
    Panasia G; Drees SL; Fetzner S; Philipp B
    Appl Environ Microbiol; 2021 Jul; 87(16):e0076221. PubMed ID: 34085859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LaoABCR, a Novel System for Oxidation of Long-Chain Alcohols Derived from SDS and Alkane Degradation in Pseudomonas aeruginosa.
    Panasia G; Philipp B
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29678916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate Ester Detergent Degradation in
    Panasia G; Oetermann S; Steinbüchel A; Philipp B
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A soluble two-component regulatory system controls expression of quinoprotein ethanol dehydrogenase (QEDH) but not expression of cytochrome c(550) of the ethanol-oxidation system in Pseudomonas aeruginosa.
    Schobert M; Görisch H
    Microbiology (Reading); 2001 Feb; 147(Pt 2):363-372. PubMed ID: 11158353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Description of the kinetic mechanism and the enantioselectivity of quinohaemoprotein ethanol dehydrogenase from Comamonas testosteroni in the oxidation of alcohols and aldehydes.
    Geerlof A; Rakels JJ; Straathof AJ; Heijnen JJ; Jongejan JA; Duine JA
    Eur J Biochem; 1994 Dec; 226(2):537-46. PubMed ID: 8001568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: the unusual disulfide ring formed by adjacent cysteine residues is essential for efficient electron transfer to cytochrome c550.
    Mennenga B; Kay CW; Görisch H
    Arch Microbiol; 2009 Apr; 191(4):361-7. PubMed ID: 19224199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome c550 from Pseudomonas aeruginosa.
    Reichmann P; Görisch H
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):173-8. PubMed ID: 8380982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient whole-cell oxidation of α,β-unsaturated alcohols to α,β-unsaturated aldehydes through the cascade biocatalysis of alcohol dehydrogenase, NADPH oxidase and hemoglobin.
    Qiao Y; Wang C; Zeng Y; Wang T; Qiao J; Lu C; Wang Z; Ying X
    Microb Cell Fact; 2021 Jan; 20(1):17. PubMed ID: 33468136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome c550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase.
    Schobert M; Görisch H
    Microbiology (Reading); 1999 Feb; 145 ( Pt 2)():471-481. PubMed ID: 10075429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas aeruginosa mutants defective in heptane oxidation.
    Macham LP; Heydeman MT
    J Gen Microbiol; 1974 Nov; 85(1):77-84. PubMed ID: 4215867
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulation of alkane oxidation in Pseudomonas putida.
    Grund A; Shapiro J; Fennewald M; Bacha P; Leahy J; Markbreiter K; Nieder M; Toepfer M
    J Bacteriol; 1975 Aug; 123(2):546-56. PubMed ID: 1150626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction.
    Larroy C; Fernández MR; González E; Parés X; Biosca JA
    Biochem J; 2002 Jan; 361(Pt 1):163-72. PubMed ID: 11742541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydride transfer made easy in the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases.
    Gadda G
    Biochemistry; 2008 Dec; 47(52):13745-53. PubMed ID: 19053234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational Engineering of a Flavoprotein Oxidase for Improved Direct Oxidation of Alcohols to Carboxylic Acids.
    Pickl M; Winkler CK; Glueck SM; Fraaije MW; Faber K
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29231859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of multiple alkane hydroxylase systems in biodegradation of crude oil n-alkane pollution by Pseudomonas aeruginosa DN1.
    Li YP; Pan JC; Ma YL
    J Appl Microbiol; 2020 Jan; 128(1):151-160. PubMed ID: 31566849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of an alcohol dehydrogenase utilizing long chain alcohols].
    Tassin JP; Vandecasteele JP
    C R Acad Hebd Seances Acad Sci D; 1971 Feb; 272(7):1024-7. PubMed ID: 4396530
    [No Abstract]   [Full Text] [Related]  

  • 17. Utilizing Alcohol for Alkane Biosynthesis by Introducing a Fatty Alcohol Dehydrogenase.
    Sui YA; Kishino S; Maruyama S; Ito M; Muramatsu M; Obata S; Ogawa J
    Appl Environ Microbiol; 2022 Dec; 88(23):e0126422. PubMed ID: 36416567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinoprotein ethanol dehydrogenase of Pseudomonas aeruginosa is a homodimer--sequence of the gene and deduced structural properties of the enzyme.
    Diehl A; von Wintzingerode F; Görisch H
    Eur J Biochem; 1998 Oct; 257(2):409-19. PubMed ID: 9826187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase.
    Ferreira P; Hernández-Ortega A; Lucas F; Carro J; Herguedas B; Borrelli KW; Guallar V; Martínez AT; Medina M
    FEBS J; 2015 Aug; 282(16):3091-106. PubMed ID: 25639975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa.
    Smits TH; Witholt B; van Beilen JB
    Antonie Van Leeuwenhoek; 2003; 84(3):193-200. PubMed ID: 14574114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.