These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34085877)

  • 1. Sorptive removal of diamond green dye by acid treated
    Rehman R; Jamil A; Alakhras F
    Int J Phytoremediation; 2022; 24(3):245-254. PubMed ID: 34085877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of low-cost nano-particle material using
    Atef R; Aboeleneen NM; AbdelMonem NM
    Int J Phytoremediation; 2023; 25(1):36-46. PubMed ID: 35369820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosorption of arsenic from aqueous solution using dye waste.
    Nigam S; Vankar PS; Gopal K
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):1161-72. PubMed ID: 22661261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The
    Samimi M; Shahriari-Moghadam M
    Int J Phytoremediation; 2023; 25(10):1328-1336. PubMed ID: 37154395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorptive removal of direct red 80 and methylene blue from aqueous solution by potato peels: a comparison of anionic and cationic dyes.
    Ben Jeddou K; Bouaziz F; Ben Taheur F; Nouri-Ellouz O; Ellouz-Ghorbel R; Ellouz-Chaabouni S
    Water Sci Technol; 2021 Mar; 83(6):1384-1398. PubMed ID: 33767044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of Safranin-O dye by copper oxide nanoparticles synthesized from
    Vidovix TB; Quesada HB; Bergamasco R; Vieira MF; Vieira AMS
    Environ Technol; 2022 Aug; 43(20):3047-3063. PubMed ID: 33826464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process optimization of adsorptive phytoremediation of mutagenic brilliant green dye for health risk management using chemically activated
    Rashid M; Rehman R; E Al-Hazemi M; Jahangir MM; T Al-Thagafi Z; I Alsantali R; Akram M
    Int J Phytoremediation; 2024; 26(5):626-638. PubMed ID: 37735932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies.
    Fontana KB; Chaves ES; Sanchez JDS; Watanabe ERLR; Pietrobelli JMTA; Lenzi GG
    Ecotoxicol Environ Saf; 2016 Feb; 124():329-336. PubMed ID: 26590694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption optimization of nickel removal from water using Punica granatum peel waste.
    Bhatnagar A; Minocha AK
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):544-8. PubMed ID: 20060692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexametaphosphate cross-linked chitosan beads for the eco-efficient removal of organic dyes: Tackling water quality.
    Raval NP; Mukherjee S; Shah NK; Gikas P; Kumar M
    J Environ Manage; 2021 Feb; 280():111680. PubMed ID: 33246752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorptive removal of 2,4-dichlorophenol from water utilizing Punica granatum peel waste and stabilization with cement.
    Bhatnagar A; Minocha AK
    J Hazard Mater; 2009 Sep; 168(2-3):1111-7. PubMed ID: 19329248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and lead(II) ions removal of modified Punica granatum L. peels.
    Ay Ç; Özcan AS; Erdoğan Y; Özcan A
    Int J Phytoremediation; 2017 Apr; 19(4):327-339. PubMed ID: 27594142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorptive removal of crystal violet dye from aqueous solutions by
    Rehman R; Majeed S
    Int J Phytoremediation; 2022; 24(10):1004-1013. PubMed ID: 34689668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective removal of cationic dye on activated carbon made from cactus fruit peels: a combined experimental and theoretical study.
    Akkari I; Graba Z; Bezzi N; Kaci MM; Merzeg FA; Bait N; Ferhati A; Dotto GL; Benguerba Y
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):3027-3044. PubMed ID: 35941501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of anionic (Acid Yellow 17 and Amaranth) dyes using aminated avocado (
    Munagapati VS; Wen HY; Vijaya Y; Wen JC; Wen JH; Tian Z; Reddy GM; Raul Garcia J
    Int J Phytoremediation; 2021; 23(9):911-923. PubMed ID: 33406890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring feasibility of citric acid infused lignocellulosic waste derived from chestnut and water melon peels for phytofiltration of Eosin yellow dye from water.
    Rehman R; Hussain MS; Abidin A; Ghfar AA; Hossain N; Akram M; Dar A
    Int J Biol Macromol; 2024 Sep; 276(Pt 2):133878. PubMed ID: 39025187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of Punica granatum biochar to adsorb Cu(II) in soil.
    Cao Q; Huang Z; Liu S; Wu Y
    Sci Rep; 2019 Jul; 9(1):11116. PubMed ID: 31366925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of synthetic reactive dyes from textile wastewater by Sorel's cement.
    Hassan SS; Awwad NS; Aboterika AH
    J Hazard Mater; 2009 Mar; 162(2-3):994-9. PubMed ID: 18635316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sustainable process for adsorptive removal of methylene blue onto a food grade mucilage: kinetics, thermodynamics, and equilibrium evaluation.
    Mijinyawa AH; Durga G; Mishra A
    Int J Phytoremediation; 2019; 21(11):1122-1129. PubMed ID: 31056928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorptive studies of hazardous dye Tropaeoline 000 from an aqueous phase on to coconut-husk.
    Jain R; Shrivastava M
    J Hazard Mater; 2008 Oct; 158(2-3):549-56. PubMed ID: 18384953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.