These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 34085895)
1. Performance of wild plants-derived biochar in the remediation of water contaminated with lead: sorption optimization, kinetics, equilibrium, thermodynamics and reusability studies. Yılmaz C; Güzel F Int J Phytoremediation; 2022; 24(2):177-186. PubMed ID: 34085895 [TBL] [Abstract][Full Text] [Related]
2. Sorptive removal of copper(II) from water by biochar produced from a novel sustainable feedstock: wild herbs. Yılmaz C; Güzel F Environ Sci Pollut Res Int; 2021 Jan; 28(1):995-1005. PubMed ID: 32827295 [TBL] [Abstract][Full Text] [Related]
3. Adsorption of Pb Zhang L; Liu X; Huang X; Wang W; Sun P; Li Y Environ Technol; 2019 Jun; 40(14):1853-1861. PubMed ID: 29364052 [TBL] [Abstract][Full Text] [Related]
4. Efficient removal of Rhodamine B dye using biochar as an adsorbent: Study the performance, kinetics, thermodynamics, adsorption isotherms and its reusability. Behera AK; Shadangi KP; Sarangi PK Chemosphere; 2024 Apr; 354():141702. PubMed ID: 38490618 [TBL] [Abstract][Full Text] [Related]
5. Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions. Amin MT; Alazba AA; Shafiq M Environ Monit Assess; 2019 Nov; 191(12):735. PubMed ID: 31707527 [TBL] [Abstract][Full Text] [Related]
6. Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds. Ahmed W; Mehmood S; Núñez-Delgado A; Ali S; Qaswar M; Shakoor A; Mahmood M; Chen DY Sci Total Environ; 2021 Aug; 784():147136. PubMed ID: 33892324 [TBL] [Abstract][Full Text] [Related]
7. Green and low-temperature synthesis of the magnetic modified biochar under the air atmosphere for the adsorptive removal of heavy metal ions from wastewater: CCD-RSM experimental design with isotherm, kinetic, and thermodynamic studies. Arabkhani P; Asfaram A; Sadegh F Environ Sci Pollut Res Int; 2023 Dec; 30(57):120085-120102. PubMed ID: 37936036 [TBL] [Abstract][Full Text] [Related]
8. Removal of lead (Pb Li Y; Shaheen SM; Azeem M; Zhang L; Feng C; Peng J; Qi W; Liu J; Luo Y; Peng Y; Ali EF; Smith K; Rinklebe J; Zhang Z; Li R Environ Pollut; 2022 Sep; 308():119693. PubMed ID: 35777593 [TBL] [Abstract][Full Text] [Related]
9. Sorption of brilliant green dye using soybean straw-derived biochar: characterization, kinetics, thermodynamics and toxicity studies. Vyavahare G; Gurav R; Patil R; Sutar S; Jadhav P; Patil D; Yang YH; Tang J; Chavan C; Kale S; Jadhav J Environ Geochem Health; 2021 Aug; 43(8):2913-2926. PubMed ID: 33433782 [TBL] [Abstract][Full Text] [Related]
10. Performance of biochar derived from rice straw for removal of Ni(II) in batch experiments. Dong L; Linghu W; Zhao D; Mou Y; Hu B; Asiri AM; Alamry KA; Xu D; Wang J Water Sci Technol; 2018 Jul; 2017(3):824-834. PubMed ID: 30016300 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of green waste-derived biochar for lead removal from aqueous systems: Characterization, equilibrium, kinetic and application. Hammo MM; Akar T; Sayin F; Celik S; Akar ST J Environ Manage; 2021 Jul; 289():112490. PubMed ID: 33819651 [TBL] [Abstract][Full Text] [Related]
12. Efficient removal of priority, hazardous priority and emerging pollutants with Prunus armeniaca functionalized biochar from aqueous wastes: Experimental optimization and modeling. Turk Sekulić M; Pap S; Stojanović Z; Bošković N; Radonić J; Šolević Knudsen T Sci Total Environ; 2018 Feb; 613-614():736-750. PubMed ID: 28938216 [TBL] [Abstract][Full Text] [Related]
13. Evaluating the adsorption of Shanghai silty clay to Cd(II), Pb(II), As(V), and Cr(VI): kinetic, equilibrium, and thermodynamic studies. Wang J; Zhang W Environ Monit Assess; 2021 Feb; 193(3):131. PubMed ID: 33590376 [TBL] [Abstract][Full Text] [Related]
14. Ni (II) adsorption onto Chrysanthemum indicum: Influencing factors, isotherms, kinetics, and thermodynamics. Vilvanathan S; Shanthakumar S Int J Phytoremediation; 2016 Oct; 18(10):1046-59. PubMed ID: 27185382 [TBL] [Abstract][Full Text] [Related]
15. Adsorption of hexavalent chromium onto alkali-modified biochar derived from Lepironia articulata: A kinetic, equilibrium, and thermodynamic study. Asadullah ; Kaewsichan L; Tohdee K Water Environ Res; 2019 Nov; 91(11):1433-1446. PubMed ID: 31063632 [TBL] [Abstract][Full Text] [Related]
16. Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu(II) from an aqueous solution using marine green algae: Halimeda gracilis. Jayakumar R; Rajasimman M; Karthikeyan C Ecotoxicol Environ Saf; 2015 Nov; 121():199-210. PubMed ID: 25866206 [TBL] [Abstract][Full Text] [Related]
17. Stem powder and its active carbon of Tungala LS; Mekala S; Pala SL; Biftu WK; Ravindhranath K Int J Phytoremediation; 2023; 25(5):598-608. PubMed ID: 35815696 [TBL] [Abstract][Full Text] [Related]
18. Adsorption optimization of lead (II) using Saccharum bengalense as a non-conventional low cost biosorbent: isotherm and thermodynamics modeling. Din MI; Hussain Z; Mirza ML; Shah AT; Athar MM Int J Phytoremediation; 2014; 16(7-12):889-908. PubMed ID: 24933891 [TBL] [Abstract][Full Text] [Related]
19. A comparative study on defluoridation capabilities of biosorbents: isotherm, kinetics, thermodynamics, cost estimation, and eco-toxicological study. Mukherjee S; Dutta S; Ray S; Halder G Environ Sci Pollut Res Int; 2018 Jun; 25(18):17473-17489. PubMed ID: 29656358 [TBL] [Abstract][Full Text] [Related]
20. Recyclable nitrogen-doped biochar via low-temperature pyrolysis for enhanced lead(II) removal. Jiang S; Yan L; Wang R; Li G; Rao P; Ju M; Jian L; Guo X; Che L Chemosphere; 2022 Jan; 286(Pt 1):131666. PubMed ID: 34320439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]