These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34086015)

  • 1. A general QSPR protocol for the prediction of atomic/inter-atomic properties: a fragment based graph convolutional neural network (F-GCN).
    Gao P; Zhang J; Qiu H; Zhao S
    Phys Chem Chem Phys; 2021 Jun; 23(23):13242-13249. PubMed ID: 34086015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Accurate Predictions of Atomic Properties via Quantum Mechanics Descriptors Augmented Graph Convolutional Neural Network: Application of This Novel Approach in NMR Chemical Shifts Predictions.
    Gao P; Zhang J; Sun Y; Yu J
    J Phys Chem Lett; 2020 Nov; 11(22):9812-9818. PubMed ID: 33151693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepAtomicCharge: a new graph convolutional network-based architecture for accurate prediction of atomic charges.
    Wang J; Cao D; Tang C; Xu L; He Q; Yang B; Chen X; Sun H; Hou T
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A big data approach to the ultra-fast prediction of DFT-calculated bond energies.
    Qu X; Latino DA; Aires-de-Sousa J
    J Cheminform; 2013; 5():34. PubMed ID: 23849655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and Interpretation of Polymer Properties Using the Graph Convolutional Network.
    Park J; Shim Y; Lee F; Rammohan A; Goyal S; Shim M; Jeong C; Kim DS
    ACS Polym Au; 2022 Aug; 2(4):213-222. PubMed ID: 36855563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time prediction of
    Guan Y; Shree Sowndarya SV; Gallegos LC; St John PC; Paton RS
    Chem Sci; 2021 Sep; 12(36):12012-12026. PubMed ID: 34667567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ABT-MPNN: an atom-bond transformer-based message-passing neural network for molecular property prediction.
    Liu C; Sun Y; Davis R; Cardona ST; Hu P
    J Cheminform; 2023 Feb; 15(1):29. PubMed ID: 36843022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refined Contact Map Prediction of Peptides Based on GCN and ResNet.
    Gu J; Zhang T; Wu C; Liang Y; Shi X
    Front Genet; 2022; 13():859626. PubMed ID: 35571037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate and Cost-Effective NMR Chemical Shift Predictions for Nucleic Acids Using a Molecules-in-Molecules Fragmentation-Based Method.
    Chandy SK; Raghavachari K
    J Chem Theory Comput; 2023 Jan; ():. PubMed ID: 36630261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules.
    Matta CF
    J Comput Chem; 2010 Apr; 31(6):1297-311. PubMed ID: 19882732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost.
    St John PC; Guan Y; Kim Y; Kim S; Paton RS
    Nat Commun; 2020 May; 11(1):2328. PubMed ID: 32393773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. kGCN: a graph-based deep learning framework for chemical structures.
    Kojima R; Ishida S; Ohta M; Iwata H; Honma T; Okuno Y
    J Cheminform; 2020 May; 12(1):32. PubMed ID: 33430993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.
    Ivanciuc O
    Curr Comput Aided Drug Des; 2013 Jun; 9(2):153-63. PubMed ID: 23701000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network.
    Chen J; Si YW; Un CW; Siu SWI
    J Cheminform; 2021 Nov; 13(1):93. PubMed ID: 34838140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BonDNet: a graph neural network for the prediction of bond dissociation energies for charged molecules.
    Wen M; Blau SM; Spotte-Smith EWC; Dwaraknath S; Persson KA
    Chem Sci; 2020 Dec; 12(5):1858-1868. PubMed ID: 34163950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Efficient Short-Term Traffic Speed Prediction Model Based on Improved TCN and GCN.
    Hu Z; Sun R; Shao F; Sui Y
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density Prediction Models for Energetic Compounds Merely Using Molecular Topology.
    Yang C; Chen J; Wang R; Zhang M; Zhang C; Liu J
    J Chem Inf Model; 2021 Jun; 61(6):2582-2593. PubMed ID: 33844526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predissociation Measurements of Bond Dissociation Energies.
    Morse MD
    Acc Chem Res; 2019 Jan; 52(1):119-126. PubMed ID: 30596416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-aware protein solubility prediction from sequence through graph convolutional network and predicted contact map.
    Chen J; Zheng S; Zhao H; Yang Y
    J Cheminform; 2021 Feb; 13(1):7. PubMed ID: 33557952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning to Predict Homolytic Dissociation Energies of C-H Bonds: Calibration of DFT-based Models with Experimental Data.
    Li W; Luan Y; Zhang Q; Aires-de-Sousa J
    Mol Inform; 2023 Jan; 42(1):e2200193. PubMed ID: 36167940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.