BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 34086450)

  • 21. Synthesis of porphyrin-incorporating covalent organic frameworks for sonodynamic therapy.
    Liu S; Zhou Y; Hu C; Cai L; Liu Z; Pang M
    Chem Commun (Camb); 2021 Aug; 57(66):8178-8181. PubMed ID: 34318809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sn(IV)-porphyrinoids for photodynamic anticancer and antimicrobial chemotherapy.
    Babu B; Mack J; Nyokong T
    Dalton Trans; 2023 Apr; 52(16):5000-5018. PubMed ID: 37009934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale Covalent Organic Framework for Combinatorial Antitumor Photodynamic and Photothermal Therapy.
    Guan Q; Zhou LL; Li YA; Li WY; Wang S; Song C; Dong YB
    ACS Nano; 2019 Nov; 13(11):13304-13316. PubMed ID: 31689082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy.
    He L; Liu Y; Lau J; Fan W; Li Q; Zhang C; Huang P; Chen X
    Nanomedicine (Lond); 2019 May; 14(10):1343-1365. PubMed ID: 31084393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cationic Pyrrolidine/Pyrroline-Substituted Porphyrins as Efficient Photosensitizers against
    Ladeira BMF; Dias CJ; Gomes ATPC; Tomé AC; Neves MGPMS; Moura NMM; Almeida A; Faustino MAF
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33477299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photodynamic biofilm inactivation by SAPYR--an exclusive singlet oxygen photosensitizer.
    Cieplik F; Späth A; Regensburger J; Gollmer A; Tabenski L; Hiller KA; Bäumler W; Maisch T; Schmalz G
    Free Radic Biol Med; 2013 Dec; 65():477-487. PubMed ID: 23891675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy.
    Zhang Y; Zhang L; Wang Z; Wang F; Kang L; Cao F; Dong K; Ren J; Qu X
    Biomaterials; 2019 Dec; 223():119462. PubMed ID: 31491599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photodynamic therapy based on porphyrin-based metal-organic frameworks.
    Xu D; Duan Q; Yu H; Dong W
    J Mater Chem B; 2023 Jul; 11(26):5976-5989. PubMed ID: 37310273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A covalent organic framework-based nanoagent for H
    Feng J; Ren WX; Kong F; Dong YB
    Chem Commun (Camb); 2021 Jul; 57(59):7240-7243. PubMed ID: 34190264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New nitroindazole-porphyrin conjugates: Synthesis, characterization and antibacterial properties.
    Eddahmi M; Sousa V; Moura NMM; Dias CJ; Bouissane L; Faustino MAF; Cavaleiro JAS; Gomes ATPC; Almeida A; Neves MGPMS; Mostapha Rakib E
    Bioorg Chem; 2020 Aug; 101():103994. PubMed ID: 32569896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and investigation of singlet oxygen production efficiency of photosensitizers based on meso-phenyl-2,5-thienylene linked porphyrin oligomers and polymers.
    Khan R; Idris M; Tuncel D
    Org Biomol Chem; 2015 Nov; 13(42):10496-504. PubMed ID: 26332671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy.
    Ferreira DC; Monteiro CS; Chaves CR; Sáfar GAM; Moreira RL; Pinheiro MVB; Martins DCS; Ladeira LO; Krambrock K
    Colloids Surf B Biointerfaces; 2017 Feb; 150():297-307. PubMed ID: 28029548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diketopyrrolopyrrole-porphyrin conjugates with high two-photon absorption and singlet oxygen generation for two-photon photodynamic therapy.
    Schmitt J; Heitz V; Sour A; Bolze F; Ftouni H; Nicoud JF; Flamigni L; Ventura B
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):169-73. PubMed ID: 25370127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Mesoporous Nanoenzyme Derived from Metal-Organic Frameworks with Endogenous Oxygen Generation to Alleviate Tumor Hypoxia for Significantly Enhanced Photodynamic Therapy.
    Wang D; Wu H; Lim WQ; Phua SZF; Xu P; Chen Q; Guo Z; Zhao Y
    Adv Mater; 2019 Jul; 31(27):e1901893. PubMed ID: 31095804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-Organic Frameworks for Photodynamic Therapy: Emerging Synergistic Cancer Therapy.
    Song Y; Wang L; Xie Z
    Biotechnol J; 2021 Feb; 16(2):e1900382. PubMed ID: 32022449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photosensitizers for Photodynamic Therapy.
    Lan M; Zhao S; Liu W; Lee CS; Zhang W; Wang P
    Adv Healthc Mater; 2019 Jul; 8(13):e1900132. PubMed ID: 31067008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unleashing the power of porphyrin photosensitizers: Illuminating breakthroughs in photodynamic therapy.
    Akbar A; Khan S; Chatterjee T; Ghosh M
    J Photochem Photobiol B; 2023 Nov; 248():112796. PubMed ID: 37804542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TPPS
    Gmurek M
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches.
    Hou L; Zhang X; Pijper TC; Browne WR; Feringa BL
    J Am Chem Soc; 2014 Jan; 136(3):910-3. PubMed ID: 24392882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers.
    Rolim JP; de-Melo MA; Guedes SF; Albuquerque-Filho FB; de Souza JR; Nogueira NA; Zanin IC; Rodrigues LK
    J Photochem Photobiol B; 2012 Jan; 106():40-6. PubMed ID: 22070899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.