BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34086546)

  • 1. Corrigendum to: Computational Modeling of Environmental Co-exposure on Oil-Derived Hydrocarbon Overload by Using Substrate-Specific Transport Protein (TodX) with Graphene Nanostructures.
    de Oliveira PV; Goulart L; Dos Santos CL; Rossato J; Fagan SB; Zanella I; Cordeiro MNDS; Ruso JM; González-Durruthy M
    Curr Top Med Chem; 2021; 21(9):839. PubMed ID: 34086546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Modeling of Environmental Co-exposure on Oil-Derived Hydrocarbon Overload by Using Substrate-Specific Transport Protein (TodX) with Graphene Nanostructures.
    de Oliveira PV; Goulart L; Dos Santos CL; Rossato J; Fagan SB; Zanella I; Cordeiro MNDS; Ruso JM; González-Durruthy M
    Curr Top Med Chem; 2020; 20(25):2308-2325. PubMed ID: 32819247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of Hydrocarbons from Contaminated Soils by Using a Thermally Expanded Graphite Sorbent.
    Caniani D; Calace S; Mazzone G; Caivano M; Mancini IM; Greco M; Masi S
    Bull Environ Contam Toxicol; 2018 Dec; 101(6):698-704. PubMed ID: 29992459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1.
    Lammel T; Boisseaux P; Navas JM
    Environ Toxicol; 2015 Sep; 30(10):1192-204. PubMed ID: 24706484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave (MW) remediation of hydrocarbon contaminated soil using spent graphite - An approach for waste as a resource.
    Sivagami K; Padmanabhan K; Joy AC; Nambi IM
    J Environ Manage; 2019 Jan; 230():151-158. PubMed ID: 30286345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional single-layer graphene sheets from aromatic monolayers.
    Matei DG; Weber NE; Kurasch S; Wundrack S; Woszczyna M; Grothe M; Weimann T; Ahlers F; Stosch R; Kaiser U; Turchanin A
    Adv Mater; 2013 Aug; 25(30):4146-51. PubMed ID: 23716462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable p-n junction formation in monolayer graphene using electrostatic substrate engineering.
    Chiu HY; Perebeinos V; Lin YM; Avouris P
    Nano Lett; 2010 Nov; 10(11):4634-9. PubMed ID: 20886859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of a rotary nanopump.
    Lohrasebi A; Jamali Y
    J Mol Graph Model; 2011 Aug; 29(8):1025-9. PubMed ID: 21605991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Environmental behavior of graphene and its effect on the transport and fate of pollutants in environment].
    Ren WJ; Teng Y
    Ying Yong Sheng Tai Xue Bao; 2014 Sep; 25(9):2723-32. PubMed ID: 25757328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process.
    Yoon T; Shin WC; Kim TY; Mun JH; Kim TS; Cho BJ
    Nano Lett; 2012 Mar; 12(3):1448-52. PubMed ID: 22335825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bandgap opening in graphene antidot lattices: the missing half.
    Ouyang F; Peng S; Liu Z; Liu Z
    ACS Nano; 2011 May; 5(5):4023-30. PubMed ID: 21513306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.
    Pan S; Aksay IA
    ACS Nano; 2011 May; 5(5):4073-83. PubMed ID: 21469697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transport in dual gated bilayer graphene with Corbino geometry.
    Yan J; Fuhrer MS
    Nano Lett; 2010 Nov; 10(11):4521-5. PubMed ID: 20919729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic mechanism of 1/f noise in graphene: role of energy band dispersion.
    Pal AN; Ghatak S; Kochat V; Sneha ES; Sampathkumar A; Raghavan S; Ghosh A
    ACS Nano; 2011 Mar; 5(3):2075-81. PubMed ID: 21332148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface doping and band gap tunability in hydrogenated graphene.
    Matis BR; Burgess JS; Bulat FA; Friedman AL; Houston BH; Baldwin JW
    ACS Nano; 2012 Jan; 6(1):17-22. PubMed ID: 22187951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-induced conductance modulation in graphene grain boundary.
    Kumar SB; Guo J
    Nano Lett; 2012 Mar; 12(3):1362-6. PubMed ID: 22324382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal transport in functionalized graphene.
    Kim JY; Lee JH; Grossman JC
    ACS Nano; 2012 Oct; 6(10):9050-7. PubMed ID: 22973878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface.
    Fei Z; Andreev GO; Bao W; Zhang LM; S McLeod A; Wang C; Stewart MK; Zhao Z; Dominguez G; Thiemens M; Fogler MM; Tauber MJ; Castro-Neto AH; Lau CN; Keilmann F; Basov DN
    Nano Lett; 2011 Nov; 11(11):4701-5. PubMed ID: 21972938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-based antibacterial paper.
    Hu W; Peng C; Luo W; Lv M; Li X; Li D; Huang Q; Fan C
    ACS Nano; 2010 Jul; 4(7):4317-23. PubMed ID: 20593851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.