BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34086947)

  • 1. Functional characterization of RebL1 highlights the evolutionary conservation of oncogenic activities of the RBBP4/7 orthologue in Tetrahymena thermophila.
    Nabeel-Shah S; Garg J; Saettone A; Ashraf K; Lee H; Wahab S; Ahmed N; Fine J; Derynck J; Pu S; Ponce M; Marcon E; Zhang Z; Greenblatt JF; Pearlman RE; Lambert JP; Fillingham J
    Nucleic Acids Res; 2021 Jun; 49(11):6196-6212. PubMed ID: 34086947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review).
    Zhan Y; Yin A; Su X; Tang N; Zhang Z; Chen Y; Wang W; Wang J
    Int J Mol Med; 2024 May; 53(5):. PubMed ID: 38577935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RebL1 is required for macronuclear structure stability and gametogenesis in
    Hao H; Lian Y; Ren C; Yang S; Zhao M; Bo T; Xu J; Wang W
    Mar Life Sci Technol; 2024 May; 6(2):183-197. PubMed ID: 38827131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zygotic expression of the double-stranded RNA binding motif protein Drb2p is required for DNA elimination in the ciliate Tetrahymena thermophila.
    Motl JA; Chalker DL
    Eukaryot Cell; 2011 Dec; 10(12):1648-59. PubMed ID: 22021239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional control of RAD51 expression in the ciliate Tetrahymena thermophila.
    Smith JJ; Cole ES; Romero DP
    Nucleic Acids Res; 2004; 32(14):4313-21. PubMed ID: 15304567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of histone deacetylation in developmentally programmed DNA rearrangements in Tetrahymena thermophila.
    Duharcourt S; Yao MC
    Eukaryot Cell; 2002 Apr; 1(2):293-303. PubMed ID: 12455963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Tetrahymena thermophila phagosome proteome.
    Jacobs ME; DeSouza LV; Samaranayake H; Pearlman RE; Siu KW; Klobutcher LA
    Eukaryot Cell; 2006 Dec; 5(12):1990-2000. PubMed ID: 17012537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Class I histone deacetylase Thd1p affects nuclear integrity in Tetrahymena thermophila.
    Wiley EA; Myers T; Parker K; Braun T; Yao MC
    Eukaryot Cell; 2005 May; 4(5):981-90. PubMed ID: 15879532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional proteomics protocol for the identification of interaction partners in
    Nabeel-Shah S; Garg J; Kougnassoukou Tchara PE; Pearlman RE; Lambert JP; Fillingham J
    STAR Protoc; 2021 Mar; 2(1):100362. PubMed ID: 33786459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the peroxiredoxin 1 subfamily from Tetrahymena thermophila.
    Al-Asadi S; Malik A; Bakiu R; Santovito G; Menz I; Schuller K
    Cell Mol Life Sci; 2019 Dec; 76(23):4745-4768. PubMed ID: 31129858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete sequence of the mitochondrial genome of Tetrahymena thermophila and comparative methods for identifying highly divergent genes.
    Brunk CF; Lee LC; Tran AB; Li J
    Nucleic Acids Res; 2003 Mar; 31(6):1673-82. PubMed ID: 12626709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A recombinase system facilitates cloning of expression cassettes in the ciliate Tetrahymena thermophila.
    Weide T; Bockau U; Rave A; Herrmann L; Hartmann MW
    BMC Microbiol; 2007 Mar; 7():12. PubMed ID: 17328820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three-dimensional structure of the Vint domain from Tetrahymena thermophila suggests a ligand-regulated cleavage mechanism by the HINT fold.
    Iwaï H; Beyer HM; Johansson JEM; Li M; Wlodawer A
    FEBS Lett; 2024 Apr; 598(8):864-874. PubMed ID: 38351630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DYF-1 Is required for assembly of the axoneme in Tetrahymena thermophila.
    Dave D; Wloga D; Sharma N; Gaertig J
    Eukaryot Cell; 2009 Sep; 8(9):1397-406. PubMed ID: 19581442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and functional evaluation of ciliary proteins in Tetrahymena thermophila.
    Gaertig J; Wloga D; Vasudevan KK; Guha M; Dentler W
    Methods Enzymol; 2013; 525():265-84. PubMed ID: 23522474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Septins stabilize mitochondria in Tetrahymena thermophila.
    Wloga D; Strzyzewska-Jówko I; Gaertig J; Jerka-Dziadosz M
    Eukaryot Cell; 2008 Aug; 7(8):1373-86. PubMed ID: 18586950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic, genomic, and functional analysis of the granule lattice proteins in Tetrahymena secretory granules.
    Cowan AT; Bowman GR; Edwards KF; Emerson JJ; Turkewitz AP
    Mol Biol Cell; 2005 Sep; 16(9):4046-60. PubMed ID: 15958493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of E-64 cysteine protease inhibitor for the recombinant protein production in Tetrahymena thermophila.
    Dündar Orhan Y; Üstüntanır Dede AF; Duran Ş; Arslanyolu M
    Eur J Protistol; 2024 Jun; 94():126085. PubMed ID: 38703600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The two domains of centrin have distinct basal body functions in Tetrahymena.
    Vonderfecht T; Stemm-Wolf AJ; Hendershott M; Giddings TH; Meehl JB; Winey M
    Mol Biol Cell; 2011 Jul; 22(13):2221-34. PubMed ID: 21562224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential growth of and nanoscale TiO₂ accumulation in Tetrahymena thermophila by direct feeding versus trophic transfer from Pseudomonas aeruginosa.
    Mielke RE; Priester JH; Werlin RA; Gelb J; Horst AM; Orias E; Holden PA
    Appl Environ Microbiol; 2013 Sep; 79(18):5616-24. PubMed ID: 23851096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.