These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3408710)

  • 1. Uptake of cesium ions by human erythrocytes and perfused rat heart: a cesium-133 NMR study.
    Davis DG; Murphy E; London RE
    Biochemistry; 1988 May; 27(10):3547-51. PubMed ID: 3408710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of ion transport in perfused rat heart: 133Cs+ as an NMR active K+ analog.
    Schornack PA; Song SK; Ling CS; Hotchkiss R; Ackerman JJ
    Am J Physiol; 1997 May; 272(5 Pt 1):C1618-34. PubMed ID: 9176154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cesium uptake studies on human erythrocytes.
    Bramham J; Riddell FG
    J Inorg Biochem; 1994 Feb; 53(3):169-76. PubMed ID: 8133253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of ion transport in septic rat heart: 133Cs+ as an NMR active K+ analog.
    Schornack PA; Song SK; Hotchkiss R; Ackerman JJ
    Am J Physiol; 1997 May; 272(5 Pt 1):C1635-41. PubMed ID: 9176155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo 133Cs-NMR a probe for studying subcellular compartmentation and ion uptake in maize root tissue.
    Pfeffer PE; Rolin DB; Brauer D; Tu SI; Kumosinski TF
    Biochim Biophys Acta; 1990 Sep; 1054(2):169-75. PubMed ID: 2400781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 23Na and 39K nuclear magnetic resonance studies of perfused rat hearts. Discrimination of intra- and extracellular ions using a shift reagent.
    Pike MM; Frazer JC; Dedrick DF; Ingwall JS; Allen PD; Springer CS; Smith TW
    Biophys J; 1985 Jul; 48(1):159-73. PubMed ID: 4016206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 133Cs nuclear magnetic resonance study of endothelial Na(+)-K(+)-ATPase activity: can actin regulate its activity?
    Gruwel ML; Culíc O; Schrader J
    Biophys J; 1997 Jun; 72(6):2775-82. PubMed ID: 9168052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multinuclear NMR studies of the Langendorff perfused rat heart.
    Jelicks LA; Gupta RK
    J Biol Chem; 1989 Sep; 264(26):15230-5. PubMed ID: 2768258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR of (133)Cs(+) in stretched hydrogels: One-dimensional, z- and NOESY spectra, and probing the ion's environment in erythrocytes.
    Kuchel PW; Shishmarev D; Puckeridge M; Levitt MH; Naumann C; Chapman BE
    J Magn Reson; 2015 Dec; 261():110-20. PubMed ID: 26561738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rubidium transport in human erythrocyte suspensions monitored by 87Rb NMR with aqueous chemical shift reagents.
    Helpern JA; Welch KM; Halvorson HR
    NMR Biomed; 1989 Jul; 2(2):47-54. PubMed ID: 2518154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of dietary loading of 133Cs as a potassium substitute in NMR studies of tissues.
    Shehan BP; Wellard RM; Adam WR; Craik DJ
    Magn Reson Med; 1993 Nov; 30(5):573-82. PubMed ID: 8259057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium or lithium chloride.
    Maizels M
    J Physiol; 1968 Apr; 195(3):657-79. PubMed ID: 5649640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance and oxygen affinity study of cesium binding in human erythrocytes.
    Lin W; Mota de Freitas D; Zhang Q; Olsen KW
    Arch Biochem Biophys; 1999 Sep; 369(1):78-88. PubMed ID: 10462442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of the competitive effect of alkali ions in the K+, Rb+ and Cs+ transport of rat erythrocytes.
    Györgyi S; Blaskó K
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(1-2):97-105. PubMed ID: 4413344
    [No Abstract]   [Full Text] [Related]  

  • 15. Evaluation of multiple-quantum-filtered 23Na NMR in monitoring intracellular Na content in the isolated perfused rat heart in the absence of a chemical-shift reagent.
    Tauskela JS; Dizon JM; Whang J; Katz J
    J Magn Reson; 1997 Jul; 127(1):115-27. PubMed ID: 9245637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 23Na and 39K NMR studies of ion transport in human erythrocytes.
    Ogino T; Shulman GI; Avison MJ; Gullans SR; den Hollander JA; Shulman RG
    Proc Natl Acad Sci U S A; 1985 Feb; 82(4):1099-103. PubMed ID: 2579385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid zero-trans kinetics of Cs
    Kuchel PW; Karlsson M; Lerche MH; Shishmarev D; Ardenkjaer-Larsen JH
    Sci Rep; 2019 Dec; 9(1):19726. PubMed ID: 31873230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional hepatocyte cation compartmentation demonstrated with 133Cs NMR.
    Wellard RM; Adam WR
    Magn Reson Med; 2002 Nov; 48(5):810-8. PubMed ID: 12417995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of sickling on ion transport. II. The effect of sickling on sodium and cesium transport.
    TOSTESON DC
    J Gen Physiol; 1955 Sep; 39(1):55-67. PubMed ID: 13252235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of external alkali metal ions with the Na-K pump of human erythrocytes: a comparison of their effects on activation of the pump and on the rate of ouabain binding.
    Hobbs AS; Dunham PB
    J Gen Physiol; 1978 Sep; 72(3):381-402. PubMed ID: 702113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.