These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3408736)

  • 21. Inhibition of ascorbic acid-induced modifications in lens proteins by peptides.
    Argirova M; Argirov O
    J Pept Sci; 2003 Mar; 9(3):170-6. PubMed ID: 12675499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ascorbic acid glycation: the reactions of L-threose in lens tissue.
    Ortwerth BJ; Speaker JA; Prabhakaram M; Lopez MG; Li EY; Feather MS
    Exp Eye Res; 1994 Jun; 58(6):665-74. PubMed ID: 7925706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A systematic approach to evaluate the modification of lens proteins by glycation-induced crosslinking.
    Lee KW; Simpson G; Ortwerth B
    Biochim Biophys Acta; 1999 Jan; 1453(1):141-51. PubMed ID: 9989254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tryptophan metabolites from young human lenses and the photooxidation of ascorbic acid by UVA light.
    Ortwerth BJ; Bhattacharyya J; Shipova E
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3311-9. PubMed ID: 19264899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins.
    Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1995 Nov; 1253(1):75-84. PubMed ID: 7492603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preventive role of lens antioxidant defense mechanism against riboflavin-mediated sunlight damaging of lens crystallins.
    Anbaraki A; Khoshaman K; Ghasemi Y; Yousefi R
    Int J Biol Macromol; 2016 Oct; 91():895-904. PubMed ID: 27316765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of nonenzymatic browning products in the human lens.
    Monnier VM; Cerami A
    Biochim Biophys Acta; 1983 Oct; 760(1):97-103. PubMed ID: 6615888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photooxidation of the nonenzymatic browning products in calf lens alpha-crystallin.
    Liang JN
    Ophthalmic Res; 1991; 23(5):259-64. PubMed ID: 1784457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonenzymatic glycosylation of bovine lens crystallins. Effect of aging.
    Chiou SH; Chylack LT; Tung WH; Bunn HF
    J Biol Chem; 1981 May; 256(10):5176-80. PubMed ID: 7228874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The glycation-associated crosslinking of lens proteins by ascorbic acid is not mediated by oxygen free radicals.
    Prabhakaram M; Ortwerth BJ
    Exp Eye Res; 1991 Aug; 53(2):261-8. PubMed ID: 1915682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison between modifications of lens proteins resulted from glycation with methylglyoxal, glyoxal, ascorbic acid, and fructose.
    Argirova M; Breipohl W
    J Biochem Mol Toxicol; 2002; 16(3):140-5. PubMed ID: 12112714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autosensitized oxidation of glycated bovine lens proteins irradiated with UVA-visible light at low oxygen concentration.
    Avila F; Matus A; Fuentealba D; Lissi E; Friguet B; Silva E
    Photochem Photobiol Sci; 2008 Jun; 7(6):718-24. PubMed ID: 18528557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UVA irradiation of human lens proteins produces residual oxidation of ascorbic acid even in the presence of high levels of glutathione.
    Ortwerth BJ; Coots A; James HL; Linetsky M
    Arch Biochem Biophys; 1998 Mar; 351(2):189-96. PubMed ID: 9515056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topical application of L-arginine blocks advanced glycation by ascorbic acid in the lens of hSVCT2 transgenic mice.
    Fan X; Xiaoqin L; Potts B; Strauch CM; Nemet I; Monnier VM
    Mol Vis; 2011; 17():2221-7. PubMed ID: 21897744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ascorbic acid and glucose oxidation by ultraviolet A-generated oxygen free radicals.
    Giangiacomo A; Olesen PR; Ortwerth BJ
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1549-56. PubMed ID: 8675397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation, purification and characterization of histidino-threosidine, a novel Maillard reaction protein crosslink from threose, lysine and histidine.
    Dai Z; Nemet I; Shen W; Monnier VM
    Arch Biochem Biophys; 2007 Jul; 463(1):78-88. PubMed ID: 17466255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens.
    Saxena P; Saxena AK; Monnier VM
    Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crosslinking and photoreaction of ozone-oxidized calf-lens alpha-crystallin.
    Fujimori E
    Invest Ophthalmol Vis Sci; 1982 Mar; 22(3):402-5. PubMed ID: 7061212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen is not required for the browning and crosslinking of protein by pentoses: relevance to Maillard reactions in vivo.
    Litchfield JE; Thorpe SR; Baynes JW
    Int J Biochem Cell Biol; 1999 Nov; 31(11):1297-305. PubMed ID: 10605822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibitors of advanced glycation end product-associated protein cross-linking.
    Lehman TD; Ortwerth BJ
    Biochim Biophys Acta; 2001 Feb; 1535(2):110-9. PubMed ID: 11341999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.