These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 34087365)

  • 1. Using connectomics for predictive assessment of brain parcellations.
    Albers KJ; Ambrosen KS; Liptrot MG; Dyrby TB; Schmidt MN; Mørup M
    Neuroimage; 2021 Sep; 238():118170. PubMed ID: 34087365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Connectivity-Driven Brain Parcellation Using Ensemble Clustering.
    Kurmukov A; Mussabaeva A; Denisova Y; Moyer D; Jahanshad N; Thompson PM; Gutman BA
    Brain Connect; 2020 May; 10(4):183-194. PubMed ID: 32264696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A personalized cortical atlas for functional regions of interest.
    Molloy MF; Osher DE
    J Neurophysiol; 2023 Nov; 130(5):1067-1080. PubMed ID: 37727907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cohesive parcellation of the human brain using resting-state fMRI.
    Nemani A; Lowe MJ
    J Neurosci Methods; 2022 Jul; 377():109629. PubMed ID: 35618164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity.
    Bryce NV; Flournoy JC; Guassi Moreira JF; Rosen ML; Sambook KA; Mair P; McLaughlin KA
    Neuroimage; 2021 Nov; 243():118487. PubMed ID: 34419594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Coarse to Fine-Grained Parcellation of the Cortical Surface Using a Fiber-Bundle Atlas.
    López-López N; Vázquez A; Houenou J; Poupon C; Mangin JF; Ladra S; Guevara P
    Front Neuroinform; 2020; 14():32. PubMed ID: 33071768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.
    Arslan S; Ktena SI; Makropoulos A; Robinson EC; Rueckert D; Parisot S
    Neuroimage; 2018 Apr; 170():5-30. PubMed ID: 28412442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior.
    Kong R; Yang Q; Gordon E; Xue A; Yan X; Orban C; Zuo XN; Spreng N; Ge T; Holmes A; Eickhoff S; Yeo BTT
    Cereb Cortex; 2021 Aug; 31(10):4477-4500. PubMed ID: 33942058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Connectomic Atlas of the Human Cerebrum-Chapter 1: Introduction, Methods, and Significance.
    Baker CM; Burks JD; Briggs RG; Conner AK; Glenn CA; Sali G; McCoy TM; Battiste JD; O'Donoghue DL; Sughrue ME
    Oper Neurosurg (Hagerstown); 2018 Dec; 15(suppl_1):S1-S9. PubMed ID: 30260422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal Brain Parcellation Based on Functional and Anatomical Connectivity.
    Wang C; Ng B; Garbi R
    Brain Connect; 2018 Nov; ():. PubMed ID: 30499336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics.
    Fan L; Zhong Q; Qin J; Li N; Su J; Zeng LL; Hu D; Shen H
    Hum Brain Mapp; 2021 Apr; 42(5):1416-1433. PubMed ID: 33283954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating brain parcellations using the distance-controlled boundary coefficient.
    Zhi D; King M; Hernandez-Castillo CR; Diedrichsen J
    Hum Brain Mapp; 2022 Aug; 43(12):3706-3720. PubMed ID: 35451538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-Based Connectivity Integration: An atlas-free approach to jointly study functional and structural connectivity.
    Cole M; Murray K; St-Onge E; Risk B; Zhong J; Schifitto G; Descoteaux M; Zhang Z
    Hum Brain Mapp; 2021 Aug; 42(11):3481-3499. PubMed ID: 33956380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atlas-guided parcellation: Individualized functionally-homogenous parcellation in cerebral cortex.
    Li Y; Liu A; Fu X; Mckeown MJ; Wang ZJ; Chen X
    Comput Biol Med; 2022 Nov; 150():106078. PubMed ID: 36155266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A whole brain fMRI atlas generated via spatially constrained spectral clustering.
    Craddock RC; James GA; Holtzheimer PE; Hu XP; Mayberg HS
    Hum Brain Mapp; 2012 Aug; 33(8):1914-28. PubMed ID: 21769991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parcellation influence on the connectivity-based structure-function relationship in the human brain.
    Messé A
    Hum Brain Mapp; 2020 Apr; 41(5):1167-1180. PubMed ID: 31746083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine-grain atlases of functional modes for fMRI analysis.
    Dadi K; Varoquaux G; Machlouzarides-Shalit A; Gorgolewski KJ; Wassermann D; Thirion B; Mensch A
    Neuroimage; 2020 Nov; 221():117126. PubMed ID: 32673748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of using group-averaged or individualized brain parcellations when investigating connectome dysfunction in psychosis.
    Levi PT; Chopra S; Pang JC; Holmes A; Gajwani M; Sassenberg TA; DeYoung CG; Fornito A
    Netw Neurosci; 2023; 7(4):1228-1247. PubMed ID: 38144692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution connectomic fingerprints: Mapping neural identity and behavior.
    Mansour L S; Tian Y; Yeo BTT; Cropley V; Zalesky A
    Neuroimage; 2021 Apr; 229():117695. PubMed ID: 33422711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.