These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 34087711)
21. Cold-Pressed Pomegranate Seed Oil: Study of Punicic Acid Properties by Coupling of GC/FID and FTIR. Zielińska A; Wójcicki K; Klensporf-Pawlik D; Marzec M; Lucarini M; Durazzo A; Fonseca J; Santini A; Nowak I; Souto EB Molecules; 2022 Sep; 27(18):. PubMed ID: 36144599 [TBL] [Abstract][Full Text] [Related]
22. Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics. Wang T; Wu HL; Long WJ; Hu Y; Cheng L; Chen AQ; Yu RQ Food Chem; 2019 Sep; 293():348-357. PubMed ID: 31151622 [TBL] [Abstract][Full Text] [Related]
23. Optimization of Ultrasonic-assisted Extraction and Fatty Acid Composition of Oil from Paeonia suffruticosa Andr. Seed. Lin X; Yi X; Ni S J Oleo Sci; 2021; 70(1):39-49. PubMed ID: 33431771 [TBL] [Abstract][Full Text] [Related]
24. Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using Raman spectroscopy and chemometrics. López-Díez EC; Bianchi G; Goodacre R J Agric Food Chem; 2003 Oct; 51(21):6145-50. PubMed ID: 14518936 [TBL] [Abstract][Full Text] [Related]
25. Fatty acid composition of the seed oil of Allium tuberosum. Hu G; Lu Y; Wei D Bioresour Technol; 2005 Sep; 96(14):1630-2. PubMed ID: 15936941 [TBL] [Abstract][Full Text] [Related]
26. Physicochemical characterization of oil, antioxidant potential, and phenolic profile of seeds isolated from Tunisian pomegranate (Punica granatum L.) cultivars. Khemakhem M; Zarroug Y; Jabou K; Selmi S; Bouzouita N J Food Sci; 2021 Mar; 86(3):852-859. PubMed ID: 33580521 [TBL] [Abstract][Full Text] [Related]
27. [Effects of nitrogen fertilization on the nitrogen uptake, accumulation, and seed quality of oil peony]. Jiang TH; Shan PP; Huang ZF; Wen LZ; Sun CH; Liu K; Zheng CS Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3257-3263. PubMed ID: 29726152 [TBL] [Abstract][Full Text] [Related]
28. Physical and chemical properties of nabak (Zizyphus spina-christi) seed kernel and sweet pepper (Capsicum annuum L.) seed oils. Embaby HE; Miyakawa T; Hachimura S; Muramatsu T; Nara M; Tanokura M J Sci Food Agric; 2022 May; 102(7):2660-2666. PubMed ID: 34689330 [TBL] [Abstract][Full Text] [Related]
29. Detection of adulteration of poppy seed oil with sunflower oil based on volatiles and triacylglycerol composition. Krist S; Stuebiger G; Bail S; Unterweger H J Agric Food Chem; 2006 Aug; 54(17):6385-9. PubMed ID: 16910734 [TBL] [Abstract][Full Text] [Related]
30. Fatty acid profile in the seeds and seed tissues of Paeonia L. species as new oil plant resources. Yu S; Du S; Yuan J; Hu Y Sci Rep; 2016 May; 6():26944. PubMed ID: 27240678 [TBL] [Abstract][Full Text] [Related]
31. Characterization of a novel squalene-rich oil: Pachira macrocarpa seed oil. Zhang W; Chen M; Liu C; Liang R; Shuai X; Chen J J Food Sci; 2022 Apr; 87(4):1696-1707. PubMed ID: 35289405 [TBL] [Abstract][Full Text] [Related]
32. Detection and identification of extra virgin olive oil adulteration by GC-MS combined with chemometrics. Yang Y; Ferro MD; Cavaco I; Liang Y J Agric Food Chem; 2013 Apr; 61(15):3693-702. PubMed ID: 23528132 [TBL] [Abstract][Full Text] [Related]
33. Effect of chlorophyll fluorescence quenching on quantitative analysis of adulteration in extra virgin olive oil. Wang H; Wan X Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119183. PubMed ID: 33246856 [TBL] [Abstract][Full Text] [Related]
34. Application of Raman spectroscopy in the rapid detection of waste cooking oil. Jin H; Li H; Yin Z; Zhu Y; Lu A; Zhao D; Li C Food Chem; 2021 Nov; 362():130191. PubMed ID: 34082292 [TBL] [Abstract][Full Text] [Related]
35. Preparation and Characterization of Emulsion-based Peony Seed Oil Microcapsule. Yang P; Du M; Cao L; Yu Z; Jiang S J Oleo Sci; 2020; 69(3):219-226. PubMed ID: 32115547 [TBL] [Abstract][Full Text] [Related]
36. Profiling and simultaneous quantitative determination of oligostilbenes in Paeonia ostii seed shell from different geographical areas in China and their comparative evaluation. Zhang L; Liu P; Gao J; Wang X; An J; Xu S; Deng RX Phytochem Anal; 2019 Jul; 30(4):464-473. PubMed ID: 30950123 [TBL] [Abstract][Full Text] [Related]
37. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS. Li Y; Fang T; Zhu S; Huang F; Chen Z; Wang Y Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():37-43. PubMed ID: 28787625 [TBL] [Abstract][Full Text] [Related]
38. Oil biosynthesis and transcriptome profiles in developing endosperm and oil characteristic analyses in Paeonia ostii var. lishizhenii. Xiu Y; Wu G; Tang W; Peng Z; Bu X; Chao L; Yin X; Xiong J; Zhang H; Zhao X; Ding J; Ma L; Wang H; van Staden J J Plant Physiol; 2018 Sep; 228():121-133. PubMed ID: 29902680 [TBL] [Abstract][Full Text] [Related]
39. Rapid detection of adulterated peony seed oil by electronic nose. Wei X; Shao X; Wei Y; Cheong L; Pan L; Tu K J Food Sci Technol; 2018 Jun; 55(6):2152-2159. PubMed ID: 29892116 [TBL] [Abstract][Full Text] [Related]