These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3408792)

  • 21. Design of nonthrombogenic polymer surfaces for blood-contacting medical devices.
    Kim SW; Jacobs H
    Blood Purif; 1996; 14(5):357-72. PubMed ID: 8894131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antithrombogenicity and oxygen permeability of block and graft copolymers of polydimethylsiloxane and poly(alpha-amino acid).
    Kumaki T; Sisido M; Imanishi Y
    J Biomed Mater Res; 1985 Sep; 19(7):785-811. PubMed ID: 4077897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature and concentration effects on supramolecular aggregation and phase behavior for poly(propylene oxide)-b-poly(ethylene oxide)- b-poly(propylene oxide) copolymers of different composition in aqueous mixtures, 1.
    D'Errico G; Paduano L; Khan A
    J Colloid Interface Sci; 2004 Nov; 279(2):379-90. PubMed ID: 15464802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Platelet adhesion on a bioresorbable poly(propylene fumarate-co-ethylene glycol) copolymer.
    Suggs LJ; West JL; Mikos AG
    Biomaterials; 1999 Apr; 20(7):683-90. PubMed ID: 10208411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ex vivo interactions and surface property relationships of polyetherurethanes.
    Lelah MD; Grasel TG; Pierce JA; Cooper SL
    J Biomed Mater Res; 1986 Apr; 20(4):433-68. PubMed ID: 3700440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Platelet deposition onto polymeric surfaces during shunting.
    Fujimoto K; Minato M; Tadokoro H; Ikada Y
    J Biomed Mater Res; 1993 Mar; 27(3):335-43. PubMed ID: 8360203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blood compatibility of SPUU-PEO-heparin graft copolymers.
    Park KD; Kim WG; Jacobs H; Okano T; Kim SW
    J Biomed Mater Res; 1992 Jun; 26(6):739-56. PubMed ID: 1527098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-thrombogenic surface inhibiting platelet adherence.
    Nishizawa EE; Wynalda DJ; Lednicer D
    Trans Am Soc Artif Intern Organs; 1973; 19():13-8. PubMed ID: 4722729
    [No Abstract]   [Full Text] [Related]  

  • 29. Effect of microphase separated structure of polystyrene/polyamine graft copolymer on adhering rat platelets in vitro.
    Kataoka K; Okano T; Sakurai Y; Nishimura T; Maeda M; Inoue S; Tsuruta T
    Biomaterials; 1982 Oct; 3(4):237-40. PubMed ID: 7171684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [A clinical and experimental study of the antithrombotic percutaneous cardiopulmonary support using the new antithrombotic coating material].
    Kawahito K
    Nihon Kyobu Geka Gakkai Zasshi; 1993 Sep; 41(9):1467-77. PubMed ID: 8409600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of phospholipid adsorption on nonthrombogenicity of polymer with phospholipid polar group.
    Ishihara K; Oshida H; Endo Y; Watanabe A; Ueda T; Nakabayashi N
    J Biomed Mater Res; 1993 Oct; 27(10):1309-14. PubMed ID: 8245045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression mechanisms for thrombus formation on heparin-immobilized segmented polyurethane-ureas.
    Nojiri C; Okano T; Park KD; Kim SW
    ASAIO Trans; 1988; 34(3):386-98. PubMed ID: 3196537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of PEO/PTMO multiblock copolymer/segmented polyurethane blends as coating materials for urinary catheters: in vitro bacterial adhesion and encrustation behavior.
    Park JH; Cho YW; Kwon IC; Jeong SY; Bae YH
    Biomaterials; 2002 Oct; 23(19):3991-4000. PubMed ID: 12162332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of nonthrombogenic polymers in a new rabbit A-A shunt model.
    Nojiri C; Okano T; Grainger D; Park KD; Nakahama S; Suzuki K; Kim SW
    ASAIO Trans; 1987; 33(3):596-601. PubMed ID: 3675993
    [No Abstract]   [Full Text] [Related]  

  • 35. In vitro evaluation of antithrombogenicity of hybrid-type vascular vessel models based on analysis of the mechanism of blood coagulation.
    Kaibara M; Kawamoto Y; Yanagida S; Kawakami S
    Biomaterials; 1995 Nov; 16(16):1229-34. PubMed ID: 8589192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo thrombus formation induced by complement activation on polymer surfaces.
    Hayashi K; Fukumura H; Yamamoto N
    J Biomed Mater Res; 1990 Oct; 24(10):1385-95. PubMed ID: 2283355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct comparison of biomaterials and endothelium in an ex vivo shunt.
    Lindenauer SM; Schultz JS; Penner JA
    Trans Am Soc Artif Intern Organs; 1981; 27():231-5. PubMed ID: 7331079
    [No Abstract]   [Full Text] [Related]  

  • 38. Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear.
    Bakker D; van Blitterswijk CA; Hesseling SC; Koerten HK; Kuijpers W; Grote JJ
    J Biomed Mater Res; 1990 Apr; 24(4):489-515. PubMed ID: 2347874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel self-assembled core-shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release.
    Papadimitriou S; Bikiaris D
    J Control Release; 2009 Sep; 138(2):177-84. PubMed ID: 19446585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of fibrinogen sialic acid residues on ex vivo platelet deposition on biomaterials.
    Park K; Gerndt SJ; Cooper SL
    Thromb Res; 1986 Aug; 43(3):293-302. PubMed ID: 3738866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.