BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34087968)

  • 1. Extended measuring depth dual-wavelength Fourier domain optical coherence tomography.
    Al-Mohamedi H; Kelly-Pérez I; Oltrup T; Cayless A; Bende T
    Biomed Tech (Berl); 2021 Dec; 66(6):557-562. PubMed ID: 34087968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic comparison and evaluation of three different Swept-Source interferometers for eye lengths biometry.
    Al-Mohamedi H; Kelly-Pérez I; Prinz A; Oltrup T; Leitritz M; Cayless A; Bende T
    Z Med Phys; 2019 Feb; 29(1):16-21. PubMed ID: 29866506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber-based photoacoustic remote sensing microscopy and spectral-domain optical coherence tomography with a dual-function 1050-nm interrogation source.
    Martell M; Haven NJ; Zemp R
    J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34164968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography.
    Lee SW; Song HW; Jung MY; Kim SH
    Opt Express; 2011 Oct; 19(22):21227-37. PubMed ID: 22108975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit.
    Watanabe Y; Itagaki T
    J Biomed Opt; 2009; 14(6):060506. PubMed ID: 20059237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution, dual-depth spectral-domain optical coherence tomography with interlaced detection for whole-eye imaging.
    Kim HJ; Kim PU; Hyeon MG; Choi Y; Kim J; Kim BM
    Appl Opt; 2016 Sep; 55(26):7212-7. PubMed ID: 27661354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue.
    Böhringer HJ; Boller D; Leppert J; Knopp U; Lankenau E; Reusche E; Hüttmann G; Giese A
    Lasers Surg Med; 2006 Jul; 38(6):588-97. PubMed ID: 16736504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved sensitivity roll-off in dual reference, buffered spectral-domain optical coherence tomography.
    Otuya DO; Verma Y; Luu R; Farrrokhi H; Tearney GJ
    J Biomed Opt; 2021 Feb; 26(2):. PubMed ID: 33569937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging human macular pigments with visible light optical coherence tomography and superluminescent diodes.
    Gupta AK; Meng R; Modi YS; Srinivasan VJ
    Opt Lett; 2023 Sep; 48(18):4737-4740. PubMed ID: 37707890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength-Filter Based Spectral Calibrated Wave number - Linearization in 1.3 mm Spectral Domain Optical Coherence.
    Wijeisnghe RE; Cho NH; Park K; Shin Y; Kim J
    Int J Eng Adv Technol; 2013 Dec; 3(2):336-340. PubMed ID: 25688338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging.
    Zhu D; Shen M; Jiang H; Li M; Wang MR; Wang Y; Ge L; Qu J; Wang J
    J Biomed Opt; 2011 Dec; 16(12):126006. PubMed ID: 22191923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence and compensation of autocorrelation terms in depth-resolved spectroscopic Fourier-domain optical coherence tomography.
    Steiner P; Meier C; Koch VM
    Appl Opt; 2010 Dec; 49(36):6917-23. PubMed ID: 21173826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automated biometry of in situ intraocular lenses using long scan depth spectral-domain optical coherence tomography.
    Chen Q; Leng L; Zhu D; Wang Y; Shao Y; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jan; 40(1):37-45. PubMed ID: 24335453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography.
    Adhi M; Liu JJ; Qavi AH; Grulkowski I; Lu CD; Mohler KJ; Ferrara D; Kraus MF; Baumal CR; Witkin AJ; Waheed NK; Hornegger J; Fujimoto JG; Duker JS
    Am J Ophthalmol; 2014 Jun; 157(6):1272-1281.e1. PubMed ID: 24561169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of anterior segment optical coherence tomography in glaucoma.
    Sharma R; Sharma A; Arora T; Sharma S; Sobti A; Jha B; Chaturvedi N; Dada T
    Surv Ophthalmol; 2014; 59(3):311-27. PubMed ID: 24138894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous dual-band optical coherence tomography for endoscopic applications.
    Xu J; Yu L; Wei X; Wang X; Chui PC; Chan KT; Lam EY; Lee NP; Wong KK
    J Biomed Opt; 2014 Dec; 19(12):126007. PubMed ID: 25490179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a Linear Wavenumber Spectrometer for Line Scanning Optical Coherence Tomography with 50 mm Focal Length Cylindrical Optics.
    Samadi S; Mohazzab M; Dargahi J; Narayanswamy S
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm.
    Li P; Johnstone M; Wang RK
    J Biomed Opt; 2014 Apr; 19(4):046013. PubMed ID: 24752381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system.
    Bradu A; Podoleanu AG
    J Biomed Opt; 2011 Jul; 16(7):076010. PubMed ID: 21806271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.