These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 34087979)
1. Generation of induced pluripotent stem cell line (ZZUi0021-A) from a patient with spinocerebellar ataxia type 19. Liu F; Fan Y; Fan L; Li M; Zhang Q; Mao C; Wu J; Zhang S; Hu Z; Shi C; Xu Y Stem Cell Res; 2021 May; 53():102320. PubMed ID: 34087979 [TBL] [Abstract][Full Text] [Related]
2. The Phenotypic Spectrum of Spinocerebellar Ataxia Type 19 in a Series of Latin American Patients. Avila-Jaque D; Martin F; Bustamante ML; Luna Álvarez M; Fernández JM; Dávila Ortiz de Montellano DJ; Pardo R; Varela D; Miranda M Cerebellum; 2024 Aug; 23(4):1727-1732. PubMed ID: 38180701 [TBL] [Abstract][Full Text] [Related]
3. Generation of induced pluripotent stem cell line (ZZUi0018-A ) from a patient with spinocerebellar ataxia type 6. Yang T; Qin J; Zhang Q; Sun H; Wang Z; Yang J; Liu H; Zhang C; Zhang S; Zhang J; Wang Y; Xu Y Stem Cell Res; 2020 Apr; 44():101777. PubMed ID: 32229428 [TBL] [Abstract][Full Text] [Related]
4. Generation of induced pluripotent stem cell line (CSUXHi002-A) from a patient with spinocerebellar ataxia type 1. He L; Zhao H; Li S; Han X; Chen Z; Wang C; Tian C; Tang F; Huang R; Lin Z; Li Z; Tang B; Jiang H Stem Cell Res; 2020 May; 45():101816. PubMed ID: 32335388 [TBL] [Abstract][Full Text] [Related]
5. Rare KCND3 Loss-of-Function Mutation Associated With the SCA19/22. Li M; Liu F; Hao X; Fan Y; Li J; Hu Z; Shi J; Fan L; Zhang S; Ma D; Guo M; Xu Y; Shi C Front Mol Neurosci; 2022; 15():919199. PubMed ID: 35813061 [TBL] [Abstract][Full Text] [Related]
7. Novel SCA19/22-associated KCND3 mutations disrupt human K Hsiao CT; Fu SJ; Liu YT; Lu YH; Zhong CY; Tang CY; Soong BW; Jeng CJ Hum Mutat; 2019 Nov; 40(11):2088-2107. PubMed ID: 31293010 [TBL] [Abstract][Full Text] [Related]
8. Novel De Novo KCND3 Mutation in a Japanese Patient with Intellectual Disability, Cerebellar Ataxia, Myoclonus, and Dystonia. Kurihara M; Ishiura H; Sasaki T; Otsuka J; Hayashi T; Terao Y; Matsukawa T; Mitsui J; Kaneko J; Nishiyama K; Doi K; Yoshimura J; Morishita S; Shimizu J; Tsuji S Cerebellum; 2018 Apr; 17(2):237-242. PubMed ID: 28895081 [TBL] [Abstract][Full Text] [Related]
9. A novel KCND3 variant in the N-terminus impairs the ionic current of Kv4.3 and is associated with SCA19/22. Reis MC; Mandler L; Kang JS; Oliver D; Halaszovich C; Nolte D J Cell Mol Med; 2024 Aug; 28(16):e70039. PubMed ID: 39180521 [TBL] [Abstract][Full Text] [Related]
11. Spinocerebellar ataxia type 11 (SCA11): An update. Gong Z; Lei L Eur J Neurosci; 2023 Jul; 58(2):2623-2640. PubMed ID: 37329117 [TBL] [Abstract][Full Text] [Related]
12. Rare forms of autosomal recessive neurodegenerative ataxia. Koenig M Semin Pediatr Neurol; 2003 Sep; 10(3):183-92. PubMed ID: 14653406 [TBL] [Abstract][Full Text] [Related]
13. Progressive cerebellar atrophy: hereditary ataxias and disorders with spinocerebellar degeneration. Wolf NI; Koenig M Handb Clin Neurol; 2013; 113():1869-78. PubMed ID: 23622410 [TBL] [Abstract][Full Text] [Related]
14. A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias. Salari M; Etemadifar M; Rashedi R; Mardani S Cerebellum; 2024 Apr; 23(2):702-721. PubMed ID: 37000369 [TBL] [Abstract][Full Text] [Related]
15. Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Corral-Juan M; Serrano-Munuera C; Rábano A; Cota-González D; Segarra-Roca A; Ispierto L; Cano-Orgaz AT; Adarmes AD; Méndez-Del-Barrio C; Jesús S; Mir P; Volpini V; Alvarez-Ramo R; Sánchez I; Matilla-Dueñas A Brain; 2018 Jul; 141(7):1981-1997. PubMed ID: 29939198 [TBL] [Abstract][Full Text] [Related]
16. Novel Features and Abnormal Pattern of Cerebral Glucose Metabolism in Spinocerebellar Ataxia 19. Paucar M; Bergendal Å; Gustavsson P; Nordenskjöld M; Laffita-Mesa J; Savitcheva I; Svenningsson P Cerebellum; 2018 Aug; 17(4):465-476. PubMed ID: 29527639 [TBL] [Abstract][Full Text] [Related]
17. Genetic screening for potassium channel mutations in Japanese autosomal dominant spinocerebellar ataxia. Tada Y; Kume K; Matsuda Y; Kurashige T; Kanaya Y; Ohsawa R; Morino H; Tabu H; Kaneko S; Suenaga T; Kakizuka A; Kawakami H J Hum Genet; 2020 Apr; 65(4):363-369. PubMed ID: 31907387 [TBL] [Abstract][Full Text] [Related]
18. Generation of a human induced pluripotent stem cell line JHUi003-A with homozygous mutation for spinocerebellar ataxia type 12 using genome editing. Feng H; Li Q; Margolis RL; Li PP Stem Cell Res; 2021 May; 53():102346. PubMed ID: 34087983 [TBL] [Abstract][Full Text] [Related]
19. Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner. Duarri A; Lin MC; Fokkens MR; Meijer M; Smeets CJ; Nibbeling EA; Boddeke E; Sinke RJ; Kampinga HH; Papazian DM; Verbeek DS Cell Mol Life Sci; 2015 Sep; 72(17):3387-99. PubMed ID: 25854634 [TBL] [Abstract][Full Text] [Related]
20. Expanding the phenotype of SCA19/22: Parkinsonism, cognitive impairment and epilepsy. Huin V; Strubi-Vuillaume I; Dujardin K; Brion M; Delliaux M; Dellacherie D; Cuvellier JC; Cuisset JM; Riquet A; Moreau C; Defebvre L; Sablonnière B; Devos D Parkinsonism Relat Disord; 2017 Dec; 45():85-89. PubMed ID: 28947073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]