These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3408798)

  • 1. Subcutaneous polymeric matrix system poly(HEMA-BGA) for controlled release of an anticancer drug (5-fluorouracil). I. Synthesis and structure.
    Denizli A; Kiremitçi M; Pişkin E
    Biomaterials; 1988 May; 9(3):257-62. PubMed ID: 3408798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcutaneous polymeric matrix system p(HEMA-BGA) for controlled release of an anticancer drug (5-fluorouracil). II: Release kinetics.
    Denizli A; Kiremitçi M; Pişkin E
    Biomaterials; 1988 Jul; 9(4):363-6. PubMed ID: 3214661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo release of testosterone from protein--vinyl polymer composites.
    Yoshida M; Asano M; Kaetsu I; Nakai K; Yamanaka H; Suzuki T; Shida K; Suzuki K
    Biomaterials; 1982 Oct; 3(4):204-8. PubMed ID: 7171679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suspension polymerization of 2-hydroxyethyl methacrylate in the presence of polymeric diluents: a novel route to spherical highly porous beads for biomedical applications.
    Jayakrishnan A; Thanoo BC
    J Biomed Mater Res; 1990 Jul; 24(7):913-27. PubMed ID: 2398078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of a new interpenetrated poly(2-hydroxyethylmethacrylate)-gelatin composite polymer.
    Santin M; Huang SJ; Iannace S; Ambrosio L; Nicolais L; Peluso G
    Biomaterials; 1996 Aug; 17(15):1459-67. PubMed ID: 8853115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro release study of 5-fluoro-uracil (5-FU) from swellable poly-(2-hydroxyethyl methacrylate) (PHEMA) nanoparticles.
    Chouhan R; Bajpai AK
    J Mater Sci Mater Med; 2009 May; 20(5):1103-14. PubMed ID: 19132508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release.
    Lu S; Anseth KS
    J Control Release; 1999 Feb; 57(3):291-300. PubMed ID: 9895416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled slow release of chemotherapeutic drugs for cancer from matrices prepared by radiation polymerization at low temperatures.
    Kaetsu I; Yoshida M; Yamada A
    J Biomed Mater Res; 1980 May; 14(3):185-97. PubMed ID: 6154055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the controlled release ability from the poly(2-hydroxyethyl methacrylate-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]-undecane) polymer network synthesized in the presence of β-cyclodextrin.
    Nita LE; Chiriac AP; Nistor MT; Tartau L
    J Mater Sci Mater Med; 2012 May; 23(5):1211-23. PubMed ID: 22415361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiating polymerization of glycol methacrylate with cyclic diketo carbon acids.
    Ruddell CL
    Stain Technol; 1983 Nov; 58(6):329-36. PubMed ID: 6679125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beads of acryloylated polyaminoacidic matrices containing 5-Fluorouracil for drug delivery.
    Pitarresi G; Pierro P; Giammona G; Muzzalupo R; Trombino S; Picci N
    Drug Deliv; 2002; 9(2):97-104. PubMed ID: 12055037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of degree of crosslinking on 5-fluorouracil release from poly(2-hydroxyethyl methacrylate) hydrogels.
    García O; Trigo RM; Blanco MD; Teijón JM
    Biomaterials; 1994 Jul; 15(9):689-94. PubMed ID: 7948591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New monodisperse magnetic polymer microspheres biofunctionalized for enzyme catalysis and bioaffinity separations.
    Horák D; Kučerová J; Korecká L; Jankovičová B; Palarčík J; Mikulášek P; Bílková Z
    Macromol Biosci; 2012 May; 12(5):647-55. PubMed ID: 22411761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-FU loaded pHEMA drainage implants for glaucoma-filtering surgery: device design and in vitro release kinetics.
    Gökce M; Akata RF; Kiremitçi-Gümüşderelioğlu M
    Biomaterials; 1996 May; 17(9):941-9. PubMed ID: 8718940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracerebral implantation of synthetic polymer/biopolymer matrix: a new perspective for brain repair.
    Woerly S; Marchand R; Lavallée C
    Biomaterials; 1990 Mar; 11(2):97-107. PubMed ID: 2317539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical investigations of ultraviolet-absorbing hydrogel material for soft intraocular lenses.
    Chirila TV; Russo AV; Constable IJ
    J Cataract Refract Surg; 1989 Sep; 15(5):504-9. PubMed ID: 2810083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics.
    Arica MY; Bayramoglu G; Arica B; Yalçin E; Ito K; Yagci Y
    Macromol Biosci; 2005 Oct; 5(10):983-92. PubMed ID: 16208632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of glucose oxidase in poly(2-hydroxyethyl methacrylate) membranes.
    Arica Y; Hasirci VN
    Biomaterials; 1987 Nov; 8(6):489-95. PubMed ID: 3427149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Megaporous poly(hydroxy ethylmethacrylate) based poly(glycidylmethacrylate-N-methacryloly-(L)-tryptophan) embedded composite cryogel.
    Türkmen D; Bereli N; Derazshamshir A; Perçin I; Shaikh H; Yılmaz F
    Colloids Surf B Biointerfaces; 2015 Jun; 130():61-8. PubMed ID: 25909180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of poly(hydroxyethyl methacrylate) cryogels containing L-histidine for insulin recognition.
    Çavuş A; Baysal Z; Alkan H
    Colloids Surf B Biointerfaces; 2013 Jul; 107():84-9. PubMed ID: 23466546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.