These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34088025)
21. Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH Fan L; Dippold MA; Thiel V; Ge T; Wu J; Kuzyakov Y; Dorodnikov M Glob Chang Biol; 2022 Jan; 28(2):654-664. PubMed ID: 34653297 [TBL] [Abstract][Full Text] [Related]
22. Response of Soil Microbial Communities to Elevated Antimony and Arsenic Contamination Indicates the Relationship between the Innate Microbiota and Contaminant Fractions. Sun W; Xiao E; Xiao T; Krumins V; Wang Q; Häggblom M; Dong Y; Tang S; Hu M; Li B; Xia B; Liu W Environ Sci Technol; 2017 Aug; 51(16):9165-9175. PubMed ID: 28700218 [TBL] [Abstract][Full Text] [Related]
23. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related]
24. Paddy soil microbial communities driven by environment- and microbe-microbe interactions: A case study of elevation-resolved microbial communities in a rice terrace. Sun W; Xiao E; Pu Z; Krumins V; Dong Y; Li B; Hu M Sci Total Environ; 2018 Jan; 612():884-893. PubMed ID: 28886540 [TBL] [Abstract][Full Text] [Related]
25. Anaerobic methane oxidation coupled to arsenate reduction in paddy soils: Insights from laboratory and field studies. Zhou Y; Guo T; Gustave W; Yuan Z; Yang J; Chen D; Tang X Chemosphere; 2023 Jan; 311(Pt 2):137055. PubMed ID: 36367509 [TBL] [Abstract][Full Text] [Related]
26. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818 [TBL] [Abstract][Full Text] [Related]
27. [Effects of Gypsum on CH Hu XY; Xiang QJ; Mu ZJ Huan Jing Ke Xue; 2018 Aug; 39(8):3894-3900. PubMed ID: 29998699 [TBL] [Abstract][Full Text] [Related]
28. Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem. Lee HJ; Kim SY; Kim PJ; Madsen EL; Jeon CO FEMS Microbiol Ecol; 2014 Apr; 88(1):195-212. PubMed ID: 24410836 [TBL] [Abstract][Full Text] [Related]
29. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog. Reumer M; Harnisz M; Lee HJ; Reim A; Grunert O; Putkinen A; Fritze H; Bodelier PLE; Ho A Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180368 [TBL] [Abstract][Full Text] [Related]
30. Effects of different carbon sources on methane production and the methanogenic communities in iron rich flooded paddy soil. Luo D; Li Y; Yao H; Chapman SJ Sci Total Environ; 2022 Jun; 823():153636. PubMed ID: 35124061 [TBL] [Abstract][Full Text] [Related]
31. Characterization of anaerobic oxidation of methane and microbial community in landfills with aeration. Jiang L; Chu YX; Zhang X; Wang J; He X; Liu CY; Chen T; He R Environ Res; 2022 Nov; 214(Pt 3):114102. PubMed ID: 35973464 [TBL] [Abstract][Full Text] [Related]
32. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes. Ren G; Ma A; Zhang Y; Deng Y; Zheng G; Zhuang X; Zhuang G; Fortin D Environ Microbiol; 2018 Jul; 20(7):2370-2385. PubMed ID: 29624877 [TBL] [Abstract][Full Text] [Related]
33. Investigation of the antimony fractions and indigenous microbiota in aerobic and anaerobic rice paddies. Kong T; Lin H; Xiao E; Xiao T; Gao P; Li B; Xu F; Qiu L; Wang X; Sun X; Sun W Sci Total Environ; 2021 Jun; 771():145408. PubMed ID: 33736169 [TBL] [Abstract][Full Text] [Related]
34. Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields. Scavino AF; Ji Y; Pump J; Klose M; Claus P; Conrad R Environ Microbiol; 2013 Sep; 15(9):2588-602. PubMed ID: 23763330 [TBL] [Abstract][Full Text] [Related]
35. Biochar decreases methanogenic archaea abundance and methane emissions in a flooded paddy soil. Qi L; Ma Z; Chang SX; Zhou P; Huang R; Wang Y; Wang Z; Gao M Sci Total Environ; 2021 Jan; 752():141958. PubMed ID: 32892054 [TBL] [Abstract][Full Text] [Related]
36. Aerobic and denitrifying methanotrophs: Dual wheels driving soil methane emission reduction. Wang J; Zhao Y; Zhou M; Hu J; Hu B Sci Total Environ; 2023 Apr; 867():161437. PubMed ID: 36623660 [TBL] [Abstract][Full Text] [Related]
37. Effect of nitrogen fertilizer and/or rice straw amendment on methanogenic archaeal communities and methane production from a rice paddy soil. Bao Q; Huang Y; Wang F; Nie S; Nicol GW; Yao H; Ding L Appl Microbiol Biotechnol; 2016 Jul; 100(13):5989-98. PubMed ID: 26923143 [TBL] [Abstract][Full Text] [Related]
38. Impacts of Redox Conditions on Arsenic and Antimony Transformation in Paddy Soil: Kinetics and Functional Bacteria. Xia B; Yang Y; Wu Y; Li X; Li F; Liu T Bull Environ Contam Toxicol; 2021 Dec; 107(6):1121-1127. PubMed ID: 33904944 [TBL] [Abstract][Full Text] [Related]
39. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Nauhaus K; Treude T; Boetius A; Krüger M Environ Microbiol; 2005 Jan; 7(1):98-106. PubMed ID: 15643940 [TBL] [Abstract][Full Text] [Related]