These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34088032)

  • 1. Diel variation of CH
    Tan D; Li Q; Wang S; Yeager KM; Guo M; Liu K; Wang Y
    Sci Total Environ; 2021 Aug; 784():147146. PubMed ID: 34088032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions.
    Rasilo T; Prairie YT; Del Giorgio PA
    Glob Chang Biol; 2015 Mar; 21(3):1124-39. PubMed ID: 25220765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diel variability of methane emissions from lakes.
    Sieczko AK; Duc NT; Schenk J; Pajala G; Rudberg D; Sawakuchi HO; Bastviken D
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21488-21494. PubMed ID: 32817550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane Emission From Global Lakes: New Spatiotemporal Data and Observation-Driven Modeling of Methane Dynamics Indicates Lower Emissions.
    Johnson MS; Matthews E; Du J; Genovese V; Bastviken D
    J Geophys Res Biogeosci; 2022 Jul; 127(7):e2022JG006793. PubMed ID: 36250198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Analysis of Greenhouse Gas Emission Characteristics and Their Influencing Factors in the Algae Zone of Lake Taihu].
    Jia L; Pu YN; Yang SJ; Su RM; Qin ZH; Zhang M
    Huan Jing Ke Xue; 2018 May; 39(5):2316-2329. PubMed ID: 29965533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minor methane emissions from an Alpine hydropower reservoir based on monitoring of diel and seasonal variability.
    Sollberger S; Wehrli B; Schubert CJ; DelSontro T; Eugster W
    Environ Sci Process Impacts; 2017 Oct; 19(10):1278-1291. PubMed ID: 28840207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interannual, summer, and diel variability of CH
    Eugster W; DelSontro T; Shaver GR; Kling GW
    Environ Sci Process Impacts; 2020 Nov; 22(11):2181-2198. PubMed ID: 33078814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane and carbon dioxide fluxes at high spatiotemporal resolution from a small temperate lake.
    Sø JS; Sand-Jensen K; Martinsen KT; Polauke E; Kjær JE; Reitzel K; Kragh T
    Sci Total Environ; 2023 Jun; 878():162895. PubMed ID: 36958559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The significant contribution of lake depth in regulating global lake diffusive methane emissions.
    Li M; Peng C; Zhu Q; Zhou X; Yang G; Song X; Zhang K
    Water Res; 2020 Apr; 172():115465. PubMed ID: 31972411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [CH
    Shang DY; Xiao QT; Hu ZH; Xie YH; Huang WJ; Zhang M
    Huan Jing Ke Xue; 2018 Nov; 39(11):5227-5236. PubMed ID: 30628248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecosystem maturity modulates greenhouse gases fluxes from artificial lakes.
    Colas F; Baudoin JM; Bonin P; Cabrol L; Daufresne M; Lassus R; Cucherousset J
    Sci Total Environ; 2021 Mar; 760():144046. PubMed ID: 33341629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparison of Floating Chamber and Diffusion Model Methods for Measuring Methane Emissions from Inland Fish-Aquaculture Ponds].
    Hu T; Huang J; Ding Y; Sun ZR; Xu MF; Liu SW; Zou JW; Wu S
    Huan Jing Ke Xue; 2020 Feb; 41(2):941-951. PubMed ID: 32608756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal variation in methane emissions in a shallow lake at a southern mid latitude during high and low rainfall periods.
    Fusé VS; Priano ME; Williams KE; Gere JI; Guzmán SA; Gratton R; Juliarena MP
    Environ Monit Assess; 2016 Oct; 188(10):590. PubMed ID: 27670888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle.
    Sturtevant CS; Oechel WC
    Glob Chang Biol; 2013 Sep; 19(9):2853-66. PubMed ID: 23649775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of deployment time and surface wind speed on the accuracy of measurements of greenhouse gas fluxes using a closed chamber method under low surface wind speed.
    Liu Y; Wang C; Ding L; Wang Z; Teng G; Shi Z; Li B
    J Air Waste Manag Assoc; 2019 Feb; 69(2):209-219. PubMed ID: 30299214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diel cycles of carbon, nutrient and metal in humic lakes of permafrost peatlands.
    Shirokova LS; Payandi-Rolland D; Lim AG; Manasypov RM; Allen J; Rols JL; Bénézeth P; Karlsson J; Pokrovsky OS
    Sci Total Environ; 2020 Oct; 737():139671. PubMed ID: 32521361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnitude and Drivers of Oxic Methane Production in Small Temperate Lakes.
    Thottathil SD; Reis PCJ; Prairie YT
    Environ Sci Technol; 2022 Aug; 56(15):11041-11050. PubMed ID: 35820110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error characterization of methane fluxes and budgets derived from a long-term comparison of open- and closed-path eddy covariance systems.
    Deventer MJ; Griffis TJ; Roman DT; Kolka RK; Wood JD; Erickson M; Baker JM; Millet DB
    Agric For Meteorol; 2019 Nov; 278():. PubMed ID: 33612901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different Apparent Gas Exchange Coefficients for CO2 and CH4: Comparing a Brown-Water and a Clear-Water Lake in the Boreal Zone during the Whole Growing Season.
    Rantakari M; Heiskanen J; Mammarella I; Tulonen T; Linnaluoma J; Kankaala P; Ojala A
    Environ Sci Technol; 2015 Oct; 49(19):11388-94. PubMed ID: 26359720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane bubbling from northern lakes: present and future contributions to the global methane budget.
    Walter KM; Smith LC; Chapin FS
    Philos Trans A Math Phys Eng Sci; 2007 Jul; 365(1856):1657-76. PubMed ID: 17513268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.